

Mechanistic Studies for Radiation Exposure to Lens of the Eye

Vinita Chauhan, PhD
Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Research Directorate, HECSB

Schematic of Lens Cells

Generate biological evidence to support an understanding of the underlying mechanisms of radiation induced-damage in lens cells.

- Radiation causes posterior subcapsular cataracts
- Aberrant lens epithelial cell division results in abnormal differentiation of fiber cells
- This can lead to abnormal accumulation of lens proteins

Specific Objectives

- Identify specific biomolecules that are important contributors to radiation exposure
- Determine molecular pathways involved in early changes to lens epithelial cells following radiation exposure
- Determine if we can identify threshold doses at which these early events occur

Experimental Approach: HLE cells were exposed to doses of 0, 0.01, 0.05, 0.25, 0.5, 2, and 5 Gy of X-ray radiation at two dose rates (1.62) cGy/min and 38.2 cGy/min). Cell culture lysates were collected 20 h post-exposure

RAMAN SPECTROSCOPY

Collaborators Carleton University
Select slides provided by : Harry Allen and Nyiri Balazs

Advantages

- Can provide concurrent molecular composition of live cells/tissues including lipids proteins, DNA
- Minimal to no sample manipulation
- Non-invasive
- Low sample volume
- In-clinic capability

Fingerprint spectrum

- Laser light interacts with molecules in a sample
- Raman scattering generates a "fingerprint" spectrum which can be analysed
- Complexity of spectrum varies with the analyte

In House Built Confocal Raman Instrumentation

- 1. 785nm laser
- 2. Laser beam collimation
- 3. Dichroic mirror
- 4. Microscope Objective (60X)
- 5. Automated x-y-z stage
- 6. CCD camera
- 7. Laser rejection filter
- 8. Pinhole
- 9. Focusing optics
- 10. Spectrometer/CCD detector

Experiment Overview

Spectral Acquisitions

- 20 nucleus and 20 cytoplasm measurements were collected
- Each measurement is the average of 9 one minute spot measurements over a 3x3 grid
- Spectrum collected from 1 micron diameter, 3 micron deep volume

Nucleus

Cytoplasm

Allen et al., 2018

Biological Assignments

Raman Shift (cm ⁻¹)	Molecular Assignment	Dose (Gy)			
		0.25	0.5	2	5
	DNA				
782	U, C, T ring br; O-P-O str bk			\downarrow	\downarrow
1551	G	\uparrow			
1577	A, G		\downarrow		
	Proteins				
747	L-Phenylalanine			\uparrow	\uparrow
808	Glutamate	\uparrow	\uparrow	\uparrow	↑
1156	C-C, C-N str			\uparrow	
1204	Amide III; CH2-glycine & proline	\uparrow			
1588	Glycine; Phenylalanine	\downarrow			

Nucleus – Raman Intensity Difference vs Dose

Fluorescent images of control and irradiated HLEs with Hoechst33342 nuclear and MitoProbe mitochondrial membrane potential gradient stain

Reactive oxygen/nitrite species

Collaboration: Premkumari Kumarathasan Bahia et al., 2018

Oxidative Stress

ROS leads to degradation, crosslinking and aggregation of lens proteins

Genomics

Collaborators: Dr Carole Yauk, Health Canada

Simplified Workflow

Representative plots of dose and fold change responses for LDR and HDR exposures for a select panel of genes that exhibited statistically significant responses in at least two doses ~1000 DEGs

PCR- pathways associated with low dose responses - amino acid degradation, enzyme inhibition, cell membrane signaling and oxidative stress burden

BMD modeling

- Method for analyzing dose-response data
- Method identifies the best-fit curve for the dose-response of each gene
- The dose that causes a defined response above the control is marked as the **BMD**
- Is now being applied to transcriptional data

A table summarizing the BMD responses across pathways and genes. It highlights differences between LDR and HDR exposures.

Exposure Type	Total # of Genes Modeled (#)	BMD Gene Median (Gy)	Minimum Gene BMD (Gy)	Total # of Pathways (#)	BMD Pathway Median (Gy)	Minimum Pathway BMD (Gy)
HDR	985	2.3	0.03	115	1.43	0.6
LDR	673	1.86	0.03	17	2.9	2.5

HDR pathway and BMD values. HDR exposures induced pathways involved in mitosis, DNA repair, cell cycle arrest, and chromatin reorganization and were enriched in the histone variant genes

	Input			
GO/Pathway/Gene Set Name	Genes	P-value	Percentage	BMD Median
Apoptosis induced DNA fragmentation	5	0.00	38	0.62
Activation of DNA fragmentation factor	5	0.00	38	0.62
Formation of Senescence-Associated				
Heterochromatin Foci (SAHF)	5	0.00	31	0.62
Protein ubiquitination	12	0.00	16	0.90
E3 ubiquitin ligases ubiquitinate target proteins	12	0.00	21	0.90
Adherens junctions interactions	7	0.00	21	0.92
Ligand-dependent caspase activation	3	0.04	18	0.95
TP53 Regulates Transcription of Death				
Receptors and Ligands	3	0.02	25	0.95
Constitutive Signaling by AKT1 E17K in Cancer	5	0.01	20	1.04
Ub-specific processing proteases	31	0.00	14	1.04
UCH proteinases	11	0.01	11	1.05
Deubiquitination	33	0.00	11	1.05
SUMOylation	13	0.01	10	1.11
SUMO E3 ligases SUMOylate target proteins	13	0.01	10	1.11
Cellular Senescence	47	0.00	24	1.11
Recruitment and ATM-mediated				
phosphorylation	23	0.00	30	1.12
Nonhomologous End-Joining (NHEJ)	23	0.00	33	1.12
DNA Double Strand Break Response	23	0.00	30	1.12

LDR pathways and BMD values. LDR induced pathways associated with extracellular matrix responses, cell motility, and collagen assembly and biosynthesis

GO/Pathway/Gene Set Name	Input Genes	P-value	Percentage	BMD Median
Antagonism of Activin by Follistatin	3	0.01	50	2.52
Collagen chain trimerization	14	0.00	18	2.78
Collagen degradation	17	0.01	13	2.78
Collagen biosynthesis and modifying enzymes	18	0.00	15	2.78
MET activates PTK2 signaling	9	0.00	23	2.82
MET promotes cell motility	9	0.00	17	2.82
ECM proteoglycans	18	0.00	16	2.91
Assembly of collagen fibrils and other multimeric				
structures	18	0.00	16	2.93
Collagen formation	20	0.00	13	2.93
Non-integrin membrane-ECM interactions	17	0.00	19	2.99
Extracellular matrix organization	53	0.00	9	3.03
Integrin cell surface interactions	20	0.00	14	3.05
Syndecan interactions	13	0.00	33	3.06
O-glycosylation of TSR domain-containing				
proteins	11	0.00	18	3.13
Defective B3GALTL causes Peters-plus syndrome				
(PpS)	11	0.00	19	3.13
Diseases associated with O-glycosylation of				
proteins	13	0.03	11	3.13
Crosslinking of collagen fibrils	7	0.04	17	3.78

Conclusions

- Radiation induces complex non-linear biphasic response
- Bio-molecules related to oxidative stress are an important component to radiationinduced damage
- HDR exposures induce pathways involved in cell apoptosis, DNA damage response, cell signaling, and chromatin reorganization related to histone genes
- The median BMD values were 1.4 Gy, but specific pathways were being activated at 0.6 Gy
- The LDR exposures exhibited pathway responses with much higher BMD values (~ 3 Gy) and were centered on extracellular matrix reorganization and collagen biosynthesis/degradation
- Genomic data suggests that the minimal threshold dose for pathway activation is 0.6
 Gy for high dose rate exposures and 2.5 Gy for low dose rate exposures

Acknowledgments

Health Canada

Carole Yauk

Byron Kuo

Remi Gagne

Andrea Rowan-Carroll

Ruth Wilkins

James McNamee

Sami Qutob

Carleton University

Sangeeta Murugkar

Ottawa General Hospital

Nyiri Balazs

Past/Present Students

Pavitra Ramachandran

Michelle Vandaloo

Simran Bahia

Hamid Moradi

Harry Allen

Achint Kumar

ICRP

- New threshold of 0.5 Gy was independent of the rate of dose delivery and severity of opacification
- Assuming that exposure to 0.5 Gy of low linear energy transfer (LET)
 radiation induces 0.5 Gy for single, acute exposure (mainly predicated on
 A-bomb data)
- A threshold not higher than 0.5 Gy for fractionated/ protracted exposures predicated on Chernobyl data (maximum likelihood central estimates for a threshold ranging from 0.34–0.50 Gy)
- A threshold uncertain for chronic exposures
- Due to lack of evidence, ICRP did not draw any firm conclusions on dose rate effects