DEVELOPMENT OF A DETERMINISTIC EYE DOSIMETRY MODEL

David Boozer, CHP, Oregon State University

David Hamby, PhD, Oregon State University & Renaissance Code Development

GOALS OF CURRENT RESEARCH

- To describe a comprehensive eye dosimetry model
 - Particle Type
 - Photons
 - Electrons
 - Size and Orientation
 - Beam (Vacuum/Air)
 - Point
 - Planar (Contamination on eyewear)
 - Shielding
 - Leaded glass
 - Regular eyewear
 - Energy
 - Monoenergetic photons and electrons
 - Energy Distribution (beta decay)
 - Multiple photopeaks (60Co, 1921r, etc.)

CONVERTING LIGHT INTO SIGHT

- Light enters the eye, refracted by the cornea
- Refracted light directed to the pupil
- The lens then directs the light to the nerve cells in the back of the eye
 - Cones and Rods
- Nerve cells send signal through the optic nerve to the brain

ACCOMMODATION IN THE LENS

- Accommodation: changes in lens shape from contractions of the ciliary muscle
- Dark-focus, or Resting Point of Accommodation, is about 67 cm
 - Measured with lasers in darkness

ANATOMY OF THE LENS

- Lens epithelium is divided into four zones
 - Germinative Zone
 - Primary site of the mitotic activity
 - Transitional Zone
 - Differentiating progeny of GZ
 - Meridional Rows
 - Non-mitotic cells which queue into orderly columns
 - Central zone
 - Non-mitotic
- Structure important for transparency
- No mechanism for removal of dead/damaged cells

WHAT IS A CATARACT?

- Cataractogenisis: lens becomes opaque due to built-up damage
- Risk Factors
 - Aging
 - Diabetes
 - Excessive sunlight
 - Smoking
 - Obesity
 - High blood pressure
 - UV and Ionizing Radiation

RADIATION INDUCED CATARACTS

- Dividing cells limited to pre-equatorial region of epithelium are sensitive
 - Cataracts form at posterior pole of lens
- Generally considered deterministic effect
 - 2 Gy acute
 - 5-8 Gy fractionated
- NRC limit: 15 rem (150 mSv)
 - ICRP recently lowered recommendation to 20 mSv

MONTE CARLO METHODS

- "Random walk" physics simulator
- Gold standard in particle transport
 - MCNP6, EGS, GEANT, etc.
- Pros
 - Customizable geometries
 - Multiple particle transport
 - Multiple energy
- Cons
 - Time intensive
 - Steep learning curve
 - Output files difficult to decode

MODELLING THE EYE

PHOTON BEAM IN A VACUUM

PHOTON POINT SOURCE IN AIR

- Monoenergetic point source
- Attenuation factors included
 - Geometric (1/r²)
 - Shielding (tissue and air)
- Parameters are energy dependent

$$D = \frac{A}{(x+r)^2} \exp[-bx]$$

ELECTRON BEAM IN A VACUUM

ELECTRON POINT SOURCE IN A VACUUM

ELECTRON POINT SOURCE IN AIR

POTENTIAL FUTURE RESEARCH

- To expand the comprehensive model to include
 - Particle Type
 - Neutrons
 - Positrons
 - Protons
 - Alphas
 - Heavy Charged Particles/Fission Fragments
 - Size and Orientation
 - Line
 - Volume
 - Secondary scatter
 - Shielding
 - Suspended plastic
 - Additional configurations and materials

