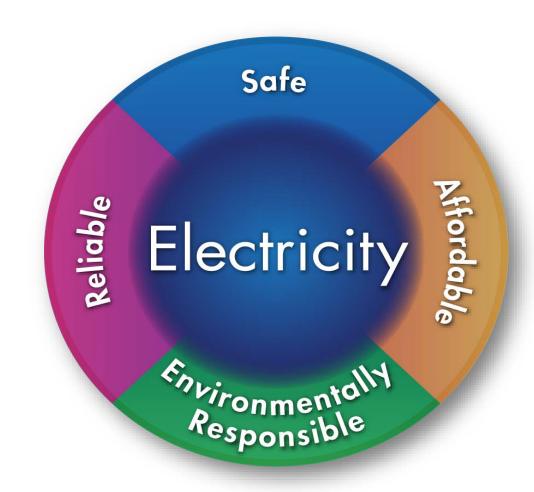


# Epidemiology and Mechanistic Effects of Radiation on the Lens of the Eye



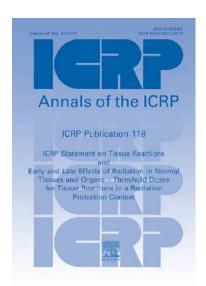
Phung K. Tran Program Manager, Radiation Safety

**Special Meeting on Dose to the Lens of the Eye** 


October 31, 2018

Ottawa, Canada

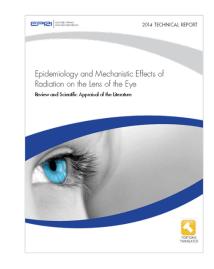
# Together...Shaping the Future of Electricity


# **EPRI's Mission**

Advancing *safe*, *reliable*, *affordable* and *environmentally responsible* electricity for society through global collaboration, thought leadership and science & technology innovation



# Independent, Collaborative, Nonprofit


# **EPRI Initiatives Following ICRP Statement on Tissue Reactions (ICRP Publication 118)**





#### **Fundamental Science**

- Evaluation of epidemiology and mechanistic effects (3002003162)
- Analysis of monitoring practices (3002000486)







## **Plant Application**

- Good practices and considerations for monitoring lens of the eye (3002010626)
- Protection factors for lens of the eye (2017+)



#### Communication

- Support of NCRP Commentary No. 26
- 2016 EPRI Workshop (3002009112)
- Ongoing industry discussions



**Epidemiology and Mechanistic Effects on the Lens of the Eye** (3002003162)

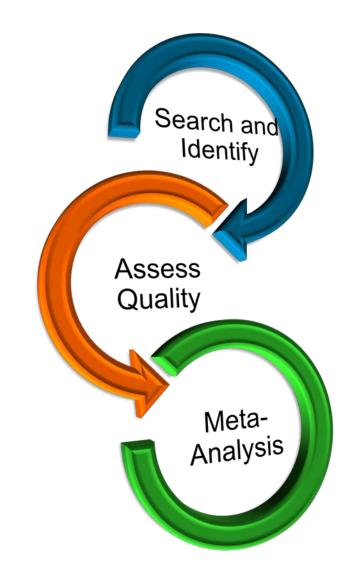
# **Objectives:**

- Perform an independent "state of the science" evaluation to understand the technical basis for the ICRP recommendations.
  - Include studies post-ICRP publication
  - Assess relative strength of scientific studies



EPRI Contribution: Quality Assessment Driven Results




2014 TECHNICAL REPORT

Epidemiology and Mechanistic Effects of Radiation on the Lens of the Eve

Review and Scientific Appraisal of the Literature

# **Approach**

- Rigorous, systematic approach to assess the methodological strengths and weaknesses/limitations
- Applied transparent criteria and classified studies by quality tiers
- Meta-analyses of reliable studies
  - Cataract Risks (odds ratio at 1 Gy)
  - Threshold Effects
- Review of molecular, cellular, and animal studies on the basic types and biology of cataract development



# Methodology

#### Literature Review:

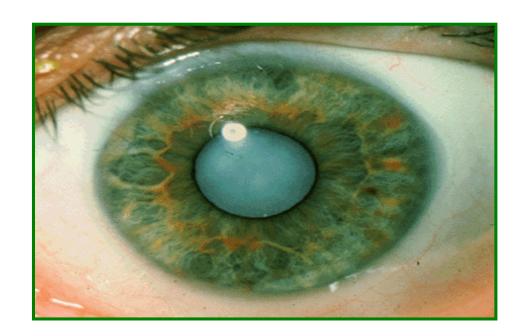
- Evaluated > 300 studies, reviews, and other references
- Larger number of studies than previous reviews

#### Evaluation Matrix:

- Established criteria based on EPA example\*
- Categorized human studies into 3 tiers:
  - ➤ Tier 1: Most informative
  - ➤ Tier 2: Less useful due to shortcomings
  - ➤ Tier 3: Unreliable for meta-analysis

    Mentioned for completeness and general
    trends

### Epidemiology Review Criteria:


- Dosimetry
- Pathology Method
- Dose Response Analysis
- Age Adjusted
- Blinded Pathology
- Cataract Scoring Type
- Confounding
- Latency
- Numerical Risk Assessment
- Selection Bias
- Reporting Bias

\*Wartenberg et al 2000

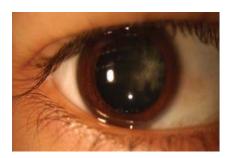


# **Cataract Epidemiology Study Evaluation**

- 59 Epidemiology Studies Evaluated
  - 9 Tier 1
  - 17 Tier 2
  - 33 Tier 3
- 4 of the Tier 1 or 2 studies provided risk ratios for a given dose.
  - A-Bomb (Nakashima)
  - US Radiology Techs (Chodick)
  - Infant Clinical Study (Hall)
  - Chernobyl Cleanup Workers (Worgul)



# Limited, high quality, epidemiological studies


# **Key Conclusions – Associations with Various Types of Cataracts**

- Science for radiogenic cataracts is evolving and uncertainties in radiation biology and epidemiology still exist.
  - Meta-analysis suggests an association exists with some types of cataracts (e.g. posterior subcapsular, cortical, and mixed cataracts) for a variety of exposure conditions and perhaps at doses lower than previously considered.

| Cataract Type            | Odds Ratio<br>at 1 Gy | 95% Confidence<br>Interval | Relevant Studies with the Specific Cataract Type |
|--------------------------|-----------------------|----------------------------|--------------------------------------------------|
| Posterior<br>subcapsular | 1.45                  | 1.25-1.68                  | Worgul 2007, Hall 1999 and Nakashima 2006        |
|                          | *1.45                 | *1.15-1.85                 |                                                  |
| Cortical                 | 1.37                  | 1.20-1.56                  | Worgul 2007, Hall 1999 and Nakashima 2006        |
|                          | *1.50                 | *1.21-1.87                 |                                                  |
| Nuclear                  | 1.07                  | 0.89-1.28                  | Worgul 2007, Nakashima 2006                      |
|                          | *1.07                 | *0.5-2.0                   | (nuclear opacity)                                |
| Mixed                    | 1.75                  | 1.26-2.46                  | Worgul 2007, Chodick 2008                        |



**Cortical Cataract** 

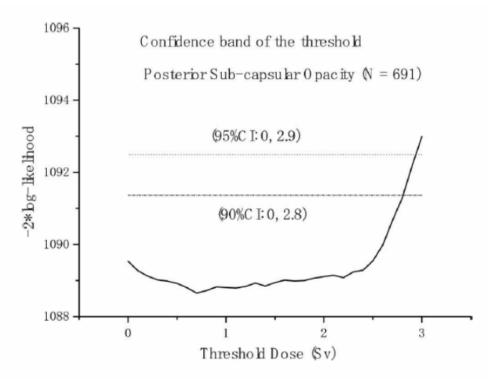


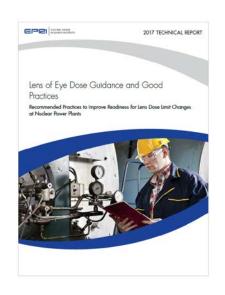
Posterior Subcapsular Cataract



# **Key Conclusions – Dose Thresholds**

- Quantitative estimate of a specific dose threshold (adverse effect dose) is not yet possible
  - Limited available studies that evaluated thresholds (A-Bomb and Chernobyl)
  - Uncertainties exist with the studies
    - Dose estimate uncertainties
    - Lens opacity/cataract detection not standardized

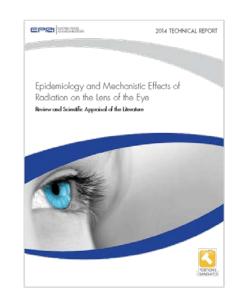




Figure 3-3
Estimation of Threshold Dose in A-bomb survivor study
(reproduced from Nakashima et al., 2006, Figure 2)

#### Presence or value of a dose threshold still unknown

# **Key Conclusions – Other Observations**

- Shift in protection criteria by ICRP
  - Previous recommendations were based on visually-impairing cataracts but new criteria places more emphasis on minor lens opacifications
  - Belief that minor lens opacifications may progress to cataracts
- Biological studies are helpful but difficult to extrapolate to human exposures.


# **EPRI Initiatives Following ICRP Statement on Tissue Reactions (ICRP Publication 118)**



#### **Fundamental Science**

- Evaluation of epidemiology and mechanistic effects (3002003162) (2014)
- Analysis of monitoring practices (3002000486)



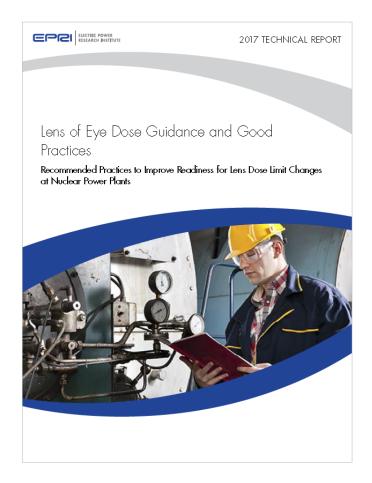


# **Plant Application**

- Good practices and considerations for monitoring lens of the eye
   (3002010626) (2017)
- Protection factors for lens of the eye (2017+)



#### Communication


- Support of NCRP Commentary No. 26
- 2016 EPRI Workshop (3002009112)
- Ongoing industry discussions

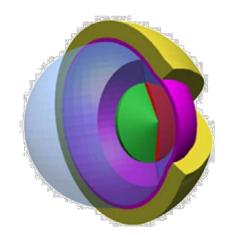


# Lens of the Eye Guidance and Good Practices (3002010626)

# Key Findings

- Lens dose should be considered separately in optimization
- Radiation fields should be characterized in situations where lens dose will be significantly higher than effective dose
- For high energy Beta, consider protective equipment
- Utilize dosimetry capable of accurate measurement of lens dose (3 mm depth)
- Provide information and training for workers on dose limits, biological effects, and changes to radiation protection program




In collaboration with Candu Owners
Group and Sweden NPPs



# Lens of the Eye Dosimetry and Shielding Factors of Protective Equipment

## Purpose:

- Develop and document a consistent approach for testing of equipment for protection of the lens of the eye for use by industry and vendors.
- Provide a generic set of protection factors for use in planning and implementing radiation protection for lens of the eye.



### Research Value:

- Provide a consistent approach for testing of equipment for protection of the lens of the eye for use by industry and vendors, and for accreditation of dosimetry
- Provide a set of factors for protection of the lens of the eye that can be used in a manner similar to the protection factors found in 10 CFR Part 20 for respiratory protection.
- Inform consensus standards development, regulatory guidance and radiation protection practice, and provide mechanisms for ensuring compliance with requirements.

#### Status

Ongoing. construction of phantoms for testing and analysis of results

#### Develop consistent approach to address Global Issue





# Together...Shaping the Future of Electricity