

The Canadian Nuclear Safety Commission's (CNSC) Experience in Evaluating Skin Dose Estimates from Direct Contamination

e-Doc: 5633657

Adelene Gaw, Dosimetrist

VARSKIN Technical Meeting
Ottawa

Our Mandate

- Regulates the use of nuclear energy and materials to protect health, safety, and security and the environment
- Implements Canada's international commitments on the peaceful use of nuclear energy
- Disseminates objective scientific, technical and regulatory information to the public

The CNSC Regulates All Nuclear-Related Facilities and Activities

CNSC's Dose Limits

➤ Equivalent dose limits for the skin are prescribed in section 14(1) of the *Radiation Protection Regulations*

Organ or Tissue	Person	Period	Equivalent Dose Limit (mSv)
Skin	Nuclear energy worker	One-year dosimetry period	500
Skin	Any other person	One calendar year	50
Hands and feet	Nuclear energy worker	One-year dosimetry period	500
Hands and feet	Any other person	One calendar year	50

Skin Contamination - CNSC's Expectations (1)

- CNSC Expectations for Licensee Response During Skin Contamination Events provides guidance on how to respond to a skin contamination event in three parts:
 - measuring contamination and decontaminating the skin
 - 2. calculating skin dose
 - 3. reporting to the CNSC

Skin Contamination - CNSC's Expectations (2)

- ➤ CNSC REGDOC-2.7.2 Volume I, Dosimetry:
 Ascertaining Occupational Dose
 - public consultation planned for fall 2018

Skin Contamination – Dose Estimates

- Most licensees calculate skin dose using published dose coefficients:
 - IAEA TECDOC 1162
 - Radionuclide and Radiation Protection Data Handbook (Delacroix et al., 2002)
 - CNSC's <u>Radionuclide Information</u> Booklet
- Some licensees have VARSKIN

Use of VARSKIN at the CNSC (1)

- Used by CNSC staff in the Radiation Protection Division
- Used to verify skin dose calculations
- Used for 1-2 cases per month
 - usually I-131, Tc-99m
- Used to carry out skin dose estimates
- Used to calculate skin dose coefficients
 - surface contamination limits in <u>REGDOC-1.6.1</u>, <u>Licence Application Guide</u>:
 <u>Nuclear Substances and Radiation Devices</u>
 - model different scenarios for performing autopsies and embalmment for the purposes of <u>REGDOC-2.7.3</u>, <u>Radiation Protection Guidelines for Safety</u> Handing of <u>Decedents</u>

Use of VARSKIN at the CNSC (2)

Geometries

- usually disk sources
- cylinders to model syringes
- sealed sources
- CNSC's Radiation Protection Regulations states, "when skin is unevenly irradiated, the equivalent dose received by the skin is the average equivalent dose over the 1 cm² area that received the highest equivalent dose"

Use of VARSKIN at the CNSC (3)

Skin thickness

- skin is defined in CNSC's Radiation Protection Regulations as, "the layer of cells within the skin that are 7 mg/cm² below the surface"
- special case: wound contamination
- > Shielding
 - gloves
 - clothing
 - source encapsulation

What We Like About VARSKIN

- > Fast
- ➤ User friendly
- ➤ Can model relatively complex exposure situations
- > Technical advice from the VARSKIN team

Opportunities for Improvement

- Making the latest version of VARSKIN more accessible to CNSC licensees
- VARSKIN has been used to estimate dose to the lens of the eye
 - information on the appropriateness and limitations would be helpful
- Sealed sources
 - consider charged particles produced in encapsulation for situations in which a person picks up a gamma emitting source (e.g., radiography)

Commission canadienne de sûreté nucléaire

Questions?

Thank You!

Participate and Contribute!

Visit us online

Like us on Facebook

Follow us on Twitter

View us on YouTube

Subscribe to updates

Contact us