

Uncertainty and Sensitivity in VARSKIN Methodology

Logan Anspach

Types of Uncertainty

- Is our interpretation of the exposure scenario correct?
- Are the tools/models used to determine physical phenomena accurate?
- Are other dosimetry models correct? Which one is "best"?
- Are the physical parameters accurate? How might they affect the model?

Uncertainty and Sensitivity

Uncertainty Analysis

How might the variation of the input parameters affect the variation of the output?

Sensitivity Analysis

Which input parameters contribute to the most variation in the output?

Where is the Most Uncertainty?

- What source geometry?
- Characteristics of source geometry?
- Characteristics of cover material?
- What activity and radionuclide concentration?
- How long?

Our interpretation of the scenario provides the largest uncertainty

A = ?

t = ?

An Example

A lab technician spills a 5 ml solution of rhenium-186 on her lab coat within an area of \sim 50 square centimeters. She is exposed for \sim 4.5 hours. The activity is \sim 379 kBq/ml.

The cloth lab coat has dimensions of T=.4~mm and $\rho=.9~g/cm^3$

Did the solution sit on top of the lab coat?

Did the solution soak into the lab coat?

What if we are uncertain of the spill dimensions?

Scenario	Dose (Gy)
Disk	.0923
Cylinder	.169
Point	.461

Crystal Ball

- Monte Carlo Excel add-in allowing for multi-parameter uncertainty and sensitivity analysis.
- Define assumptions for uncertain variables in model by assigning probability distributions, based on what is known of those variables:

Photon Methodology

$$D\left[\frac{Gy}{nt}\right] = \frac{k}{4\pi} * \sum_{j=1}^{N} \frac{w_j}{d_j^2} * \sum_{i} \left[y_i * E_i * \left(\frac{\mu_{en}}{\rho}\right) * \left(f_{cpe}\right)_{i,j} * \left(F_{oa}\right)_{i,j} * \left(F_{oa}\right$$

Small variations in textbook values

Uniform

Normal

Normal distribution with Monte Carlo error

Photon Simulations – Less Likely

Photon Simulations – More Likely

Standard deviation of 1% for each factor of CPE.

$$f_{cpe}(d_j) = \frac{1}{a + bln(d_j) + \frac{c}{\sqrt{d_j}}}$$

Relative Standard Deviation Comparison

Electron Methodology

$$D = \sum_{j=1}^{N} \left[\frac{k * W_{j} * BSCF} * A * y * E * F_{\beta_{j}}}{4\pi r^{2} * \rho * x_{90}} \right]$$

Triangular

Between $\pm 5\%$

Assuming standard deviation of 1%

Electron Simulations – Less Likely

Electron Simulations – More Likely

Relative Standard Deviation Comparison

Photon Model Comparison

GEOMETRY 1: POINT SOURCE

Figure B.1.1. A point source geometry comparison of VARSKIN 5 (circles) and MCNP5 (lines) predicted dose per initial photon as a function of photon energy in tissue at a density thickness of 7 mg/cm² and a tissue volume cylinder of area 1 cm² (solid line) and 10 cm² (dashed line), with a thickness of 20 μm

Electron Model Comparisons

