

VARSKIN 6

VARSKIN Examples, Training Modules, Dosimetry Theory

Colby Mangini, PhD, CHP

VARSKIN Consultant
Paragon Scientific, LLC

Vered Shaffer, PhD

Project Manager

Office of Nuclear Regulatory Research

Nuclear Regulatory Commission

Outline

- Training Modules Demonstration
- Electron/Photon Dosimetry Theory
- Examples

VARSKIN 6

VARSKIN Training Modules

VARSKIN 6

Electron Dosimetry Theory

Electron Interactions

- As energetic electrons pass through material, they transfer energy
 - primarily via "soft collisions", i.e., Coulombic interactions
 - or, "hard" collisions with orbital electrons
- Energy loss is a function of KE & charge density
- Energy loss can result in:
 - excitation characteristic X-rays
 - ionization scattered energetic electrons
 - Bremsstrahlung (>1 MeV electrons) low-energy photons
- Scattered electrons may produce additional ion pairs
 - e.g., clusters, delta rays, further excitation/ionization

Range-Energy Observations

- Electrons lose energy via tortuous paths
- Electron range (penetration depth) increases with increasing energy
- Linear range is largely dependent on electron density of the absorber atoms
- And, to a lesser degree, range is a function of Z
 - result has practical implications for shielding
 - density thickness (mg/cm²) is best indicator of electron range
 - important tissue depths → 7, 100, 300, 1000 mg/cm²

Range-Energy Relationship for Electrons

Advantage of Density Thickness

Electron Track Simulation

Electron Point-Kernel Dosimetry

As with photons, the point-kernel method can be used for monoenergetic electron dosimetry in which dose is integrated over all source and receptor points:

$$G(r,E) = \frac{E}{4\pi r^2 \rho r_0} F(r/r_0,E)$$

The function $F(r/r_0, E)$ is a "scaled absorbed dose distribution" (essentially a normalized Bragg curve) that is dependent on the electron initial energy and the fraction of maximum range (r/r_0) that the electron has achieved by the time it reaches the dose location.

Scaled Absorbed Dose Distributions

The factor $F(r/r_0, E)$ is shown for electrons of energy E, and for beta particles of distributed E, normalized over their maximum range, r_0

Fundamentally ...

- Point-kernel method employed
- Source on skin surface
- Dose calculated to a given averaging area at the userspecified depth
- Energy absorption based on calculated stopping power at depth

Symmetric-Source Dose Calculation

- Original VARSKIN begins at the center dose point of the irradiation area
- The code divides the source into very small sub-volumes (source points)
- The number of source points chosen is sufficient for convergence (checked along the way)

Density Correction Model

$$r_c = C_{thick} \cdot \left(\frac{r}{D_{rad}} \right)$$

$$r_{t} = S_{dep} \cdot \left(\nearrow D_{rad} \right)$$

$$r_{c} = C_{thick} \cdot \left(\nearrow D_{rad} \right) \qquad r_{t} = S_{dep} \cdot \left(\nearrow D_{rad} \right) \qquad r_{s} = \left(D_{rad} - C_{thick} - S_{dep} \right) \cdot \left(\nearrow D_{rad} \right)$$

$$r_1 = \frac{\left(r_s \rho_s + r_c \rho_c + r_t \rho_t\right)}{\rho_t}$$

VARSKIN 6

Electron Dosimetry Theory

<u>Advanced Scaling Parameters</u>

Methods: Scaling Model

- Using EGSnrc Monte Carlo simulations:
 - Homogeneous point-source DPK's for water at 0.01 MeV $\leq E \leq 8$ MeV (30 energies)
 - Non-homogeneous point-source DPK's for $7.42 < Z \le 94$ (18 solid elements) at $0.01 \text{ MeV} \le E \le 8 \text{ MeV}$
 - water absorption sphere
 - radii varied between 5% to 110% of the X_{90} value

Scaling Model

• 1 MeV electron DPK's for the case of a homogenous medium (water) and the case of a non-homogeneous medium (for example, air over the skin with a source material of iron)

Scaling Model

• 1 MeV electron DPK's for the case of a homogenous medium (water) and the case of a non-homogeneous medium (for example, air over the skin with a source material of iron)

Scaling Model

Volumetric Beta Dose vs Source Z

VARSKIN 6

Electron Dosimetry Theory

Backscatter Correction

Original Backscatter Determination

New Backscatter Model

- Point-source planar dose profiles for water, air, and $7.42 < Z \le 94$ scattering media at $0.01 \text{ MeV} \le E \le 8 \text{ MeV}$ using EGSnrc Monte Carlo simulations
- Dose averaging areas of 1 and 10 cm²
- Normal depths every 1 mg cm⁻² (up to 1000 mg cm⁻²)

Point-Source BSCF

Scatter Scenarios

- Source scatter for top/bottom of source
- Source scatter for sides of source
- Air scatter for top/sides of source

Scatter for Top/Bottom of Source

Scatter for Top/Bottom of Source

Scatter for Top/Bottom of Source

Air Scatter for Top/Sides of Source

Air Scatter for Top/Sides of Source

Volumetric BSCF

SUMMARY

- Electron Interactions --> Electron energy distribution
- Energy scaling model
- Range scaling model
- Backscatter correction factors
- Numerical Integration of Dose-Point Kernels

VARSKIN 6

Photon Dosimetry Theory

Interaction Fundamentals

- Photon interactions are 'semi-random' events
- Photons generally interact with orbital electrons
- Interaction probability is governed by:
 - material (Z, electron density)
 - photon energy (E)
- ... and is described by an interaction coefficient
- Principal mechanisms of interaction include (by increasing energy):
 - Thomson/Rayleigh scatter (no E transfer)
 - photoelectric
 - Compton scatter
 - pair production
 - photo-disintegration (very high E)

Attenuation

- Attenuation is exponential and governed by the Beer-Lambert law
- Photon intensity never reaches zero
- Photon attenuation can be described by:

$$I = I_o e^{-\mu x}$$

- I₀ = photon intensity (flux) prior to material
- I = photon intensity after material
- x = material thickness
- μ = interaction coefficient (probability of interaction by any mechanism)
- For dosimetry considerations, coefficients are often necessary to describe the probability of interaction resulting in energy absorption
 - referred to as mass absorption coefficient, with units of area per unit mass

Energy Transfer - KERMA

- <u>Kinetic Energy Released in Matter</u>
- Has units of energy per unit mass of material (J/kg, but not Gy)
- KERMA is directly related to:
 - the average energy transferred to material as a result of that interaction;
 - uncollided photon fluence; and
 - the probability (per unit density thickness) of a photon interaction.

$$K = \overline{E}_{tr} \cdot \Phi_0 \cdot \frac{\mu}{\rho}$$

Energy Absorption - Dose

- "Absorbed Dose" also has units of energy per unit mass (J/kg or Gy)
- Different from KERMA in that the energy is absorbed (rather than simply transferred)
- DOSE is directly related to:
 - the average energy absorbed in material as a result of that interaction;
 - uncollided photon fluence; and
 - the probability (per unit density thickness) of a photon interaction.

$$D = \overline{E}_{en} \cdot \Phi_0 \cdot \frac{\mu}{\rho}$$

Relationship Between KERMA and Dose

$$K = \overline{E}_{tr} \cdot \Phi_0 \cdot \frac{\mu}{\rho} = E_0 \cdot \Phi_0 \cdot \frac{\mu_{tr}}{\rho}$$

$$K = \overline{E}_{tr} \cdot \Phi_0 \cdot \frac{\mu}{\rho} = E_0 \cdot \Phi_0 \cdot \frac{\mu_{tr}}{\rho}$$

$$D = \overline{E}_{en} \cdot \Phi_0 \cdot \frac{\mu}{\rho} = E_0 \cdot \Phi_0 \cdot \frac{\mu_{en}}{\rho}$$

- $\frac{\mu_{tr}}{\rho}$ = probability per unit mass that energy is transferred to charged particles
- $\frac{\mu_{en}}{\rho}$ = probability per unit mass that energy is absorbed locally
- For low-energy photons, nearly all of energy transferred is deposited locally, therefore, KERMA is insignificantly different than absorbed dose

$$D = K \cdot \frac{\mu_{en}}{\mu_{tr}}$$

• For a given photon energy, and once "charged-particle equilibrium" is established:

Charged-Particle Equilibrium

- Using a transfer coefficient, KERMA is easily estimated from photon flux
- Dose, as a function of depth, must then be determined from a conversion of KERMA based on the buildup of electronic charge, also as a function of depth
- Charged-Particle Equilibrium (cpe) is established once this charge buildup is complete

KERMA and Dose Buildup w/o Attenuation

KERMA and Dose Buildup

details ...

$$\mathcal{D}(d) = E_0 \cdot \Phi_0 e^{-\mu d} \cdot \frac{\mu_{tr}}{\rho} \cdot f_{cpe}(d)$$

Photon Dose at Shallow Depths

• Thus, with the flux attenuated by material and geometry, and charged particle buildup taken into account, the dose rate at depth d, is determined using:

VARSKIN 4/5/6 Photon Dosimetry

- The new VARKSIN photon dosimetry model introduced in VARSKIN 4 considers:
 - photon point-kernel methodology
 - charge-particle buildup; attenuation; off-axis scatter
 - numerical integration of 300 dose points for each source point
- Employs many of the same assumptions from the electron model:
 - multiple geometries (point, disk, cylinder, sphere, slab)
 - dose calculated to averaging disk (0.01 to 100 cm²) beneath skin at user specified depth
 - variable dose averaging
 - 2D averaging areas (regulatory compliance)
 - 3D averaging volumes (detector simulation)

"Point Kernel" Concept

Now, let's put the dose equation to use ...

"Point Kernel" Concept

$$\frac{\dot{D}(d)}{S} = E_0 \cdot \frac{e^{-\mu d}}{4\pi d^2} \cdot \frac{\mu_{tr}}{\rho} \cdot f_{cpe}(d)$$

Integrate Point Kernels Over Source/Dose Volume

$$\dot{\mathcal{D}}(h) = \sum_{i} w_{i} \cdot \dot{\mathcal{D}}(\theta) = \sum_{i} w_{i} \cdot E_{0} \cdot \frac{S}{4\pi d^{2}} e^{-\mu d} \cdot \frac{\mu_{tr}}{\rho} \cdot f_{cpe}(d)$$

ICRU 44 soft tissue mass attenuation coefficients

ICRU 44 soft tissue mass energy absorption coefficients

Accounting for CPE

CPE buildup correction factors, f_{CPE} , is defined as:

$$D(x) = K(x) \cdot f_{CPE}(x)$$

$$f_{CPE}(x) = \frac{D(x)}{K(x)} \to \frac{\sum^* f8(x)}{f6(x)}$$

Charged-Particle Buildup

• Using Monte Carlo simulation, the buildup correction factors were found to fit the general form:

$$\frac{1}{f_{cpe}(d,E)} = a + b\ln(d) + \frac{c}{\sqrt{d}}$$

VARSKIN 4/5/6 exposure geometries

Source Geometries

Syringe

Point ← Offset Particle Model
 Disk
 Cylinder
 Sphere
 Slab

← Geometry eliminated

VARSKIN 4/5/6 exposure options

- User specifies:
 - Source & Geometry
 - Dose depth
 - Dose averaging area
 - Volume averaging option
 - Air and cover thicknesses
- Multiple cover calculator
- Option to turn off photon dose calculations
- "Reset" feature to re-initialize parameters

Impact of Source Geometry

⁶⁰Co (0.318; 1.25) ¹⁰⁶Rh (3.54; 0.512)

Dose relative to point geometry 1 mm dimensions 10 cm² area Shallow dose

Air-Gap Model

- The presence of air between source and skin
 - disrupts charged-particle buildup
 - adds depth to dose calculation
 - alters off-axis geometry
- The air layer can be model only as being in contact with the skin surface
- Attenuation in air <u>is</u> considered

On-Axis Calculation of Dose

- Varskin 3 calculated dose at 60 locations around the dose-averaging disk
 - Method tends to weight the average such that it provides an over-estimation
- For VARSKIN 4, we assumed the following:
 - Point source is located directly above and on-axis with the averaging disk
 - Presumes symmetry in calculations along a radius of the dose-averaging disk
 - Weighted by the fractional area of each annulus
 - Provides a better estimate of average dose to the entire disk

Offset Particle Model

- For point source, photon dosimetry
- To estimate the greatest dose to a single averaging area beneath multiple sources
- Used when two (or more) hot particles are in proximity to each other (when separation is less than the diameter of the averaging area)
- On selection, user must enter the Offset Value (0 cm)

Offset-particle model

Source is not on axis of dose-averaging disk

This feature allows for the calculation of <u>photon</u> dose from multiple hot particles to a single dose-averaging disk

Off-Axis Correction

- CPE factors were determined at various depths on-axis in an infinite medium
 - thus, photon/electron loss at tissue-air interface is not considered
- Previous calculations assumed $D_i = D_{ii} = D_{iii}$
 - additional simulations performed to consider electron loss
- Ratio of off-axis dose to perpendicular dose at depth is plotted

Off-Axis Correction Factors Implemented for 4 Dose Averaging Areas

Elements of the dose calculation

• So, this leaves us with a point-kernel photon dosimetry model that contains these elements:

SUMMARIZING the Model

Effort to improve accuracy, simplify, and provide continuity

$$\dot{D}_{disc}(h,A) = \frac{\int f_{CPE}(x) \cdot \dot{K}(x) \cdot F_{oa} \cdot e^{-\mu \sqrt{h^2 + r^2}} dA}{\int dA}$$

Model Components

- Attenuation Coefficient
 - improve accuracy
- Buildup Region f_{cpe}
 - improve accuracy
 - simplify –function of E
- Off-Axis Factors F_{oa}
 - analytical fit

VARSKIN 6

Examples

Scenario #1

- Radiation worker in reactor containment
- 60Co hot particle (2.5 mCi; 15 min) on gloved hand
- 50 μm @ 8.3 g/cm³ (Z=27)
- 80 x 70 μm
- Glove characteristics: 0.3 mm and 0.6 g/cm³
- Initially, point-source geometry
- Then, refine for more realism ...

Point source

results

Note β/γ contribution

summary

	Beta Dose	Photon Dose	Total Dose (rad)
Point Source	32.5	10.5	43.1
Cylindrical Equivalent			
Deep Dose			

Cylindrical equivalent source

results

summary

	Beta Dose	Photon Dose	Total Dose (rad)
Point Source	32.5	10.5	43.1
Cylindrical Equivalent	13.0	10.6	23.6
Deep Dose			

Deep dose

results

	Beta Dose	Photon Dose	Total Dose (rad)
Point Source	32.5	10.5	43.1
Cylindrical Equivalent	13.0	10.6	23.6
Deep Dose	0	3.24	3.24

Scenario #2

- Nuclear medicine technician
- 10 μ Ci/mL of ¹⁸⁶Re (decays to ¹⁸⁶Os and ¹⁸⁶W)
- Unknown to tech, 5 mL spills on lab coat
- 50 cm² circular shape
- 4.5 hr exposure
- Initially,
 - point-source geometry
 - source in contact with the skin
- Then, refine for more realism
 - coat thickness of 0.4 mm, and density of 0.9 g/cm³

	Beta Dose	Photon Dose	Total Dose (rad)
Point on Skin	131	0.0673	131
Disk on Skin			
Disk on Coat			
Cylinder in Cloth			

	Beta Dose	Photon Dose	Total Dose (rad)
Point on Skin	131	0.0673	131
Disk on Skin	26.2	0.0149	26.2
Disk on Coat			
Cylinder in Cloth			

	Beta Dose	Photon Dose	Total Dose (rad)
Point on Skin	131	0.0673	131
Disk on Skin	26.2	0.0149	26.2
Disk on Coat	9.21	0.0110	9.23
Cylinder in Cloth			

	Beta Dose	Photon Dose	Total Dose (rad)
Point on Skin	131	0.0673	131
Disk on Skin	26.2	0.0149	26.2
Disk on Coat	9.21	0.0110	9.23
Cylinder in Cloth	16.9	0.0126	16.9

scenario #3

- Dose rate from general contamination
- ¹⁴¹Ce directly on the skin
 - with concentration (0.25 μCi/cm²)
- 1" x 1" contamination area
- Exposure to 1.61 μCi liquid source
- As before, point-source geometry for a bounding estimate
- ... then refine for more realism ...

Point source

1" x 1"	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
Point Source	0.954	0.00229	0.956
2D Disk Source			
Water Slab Source			
Air Slab Source			
Water Slab (1 cm ²)			

2D Disk source

1" x 1"	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
Point Source	0.954	0.00229	0.956
2D Disk Source	0.965	0.00215	0.967
Water Slab Source			
Air Slab Source			
Water Slab (1 cm ²)			

Slab source

1" x 1"	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
Point Source	0.954	0.00229	0.956
2D Disk Source	0.965	0.00215	0.967
Water Slab Source	1.05	0.00195	1.05
Air Slab Source			
Water Slab (1 cm ²)			

Slab source (low density)

1" x 1"	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
Point Source	0.954	0.00229	0.956
2D Disk Source	0.965	0.00215	0.967
Water Slab Source	1.05	0.00195	1.05
Air Slab Source	0.952	0.00195	0.954
Water Slab (1 cm ²)			

Slab source (1 cm²)

1" x 1"	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
Point Source	0.954	0.00229	0.956
2D Disk Source	0.965	0.00215	0.967
Water Slab Source	1.05	0.00195	1.05
Air Slab Source	0.952	0.00195	0.954
Water Slab (1 cm²)	1.61	0.0113	1.62

scenario #4

- Particle (not captured) on plastic lab coat
 - will assume 3 mm air gap (very arbitrary)
 - coat thickness of 0.20 mm, and density of 0.36 g/cm³
- Source measurements indicate:
 - 0.0036 μCi of Co-57
 - 0.1920 μCi of Ru-106 (Rh-106)
 - 0.0028 μCi of Cs-134
 - 0.0036 μCi of Cs-137 (Ba-137m)
- Modeled as a point source
- Interested in a beta and gamma depth-dose profile

Beta activity determination

Varskin input

Results by nuclide

@ 7 mg/cm ²	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
Co-57	1.85E-5	3.53E-5	5.38E-5
Ru-106	0	0	0
Rh-106	4.65E-2	1.04E-4	4.66E-2
Cs-134	6.41E-4	1.27E-5	6.54E-4
Cs-137	1.06E-3	0	1.06E-3
Ba-137m	1.02E-4	6.49E-6	1.09E-4
TOTAL	4.83E-2	1.58E-4	4.85E-2

Results by depth

	Beta Dose Rate	Photon Dose Rate	Total Dose Rate (rad/hr)
7 mg/cm ²	4.83E-2	1.58E-4	4.85E-2
30	5.00E-2	1.74E-4	5.01E-2
50	4.98E-2	1.84E-4	5.00E-2
100	4.67E-2	1.95E-4	4.69E-2
300	2.64E-2	1.65E-4	2.66E-2
500	1.25E-2	1.25E-4	1.27E-2
1000	9.68E-4	7.00E-5	1.04E-3

scenario #5 (offset model)

- Two particles on skin
 - separated by 3.0 cm
- Particle #1:
 - 1.38 μCi of Mn-54 (Z=25)
- Particle #2:
 - 0.471 μCi of Co-60 (Z=27)
- Modeled as two offset point sources
- Offset model only works for <u>photon</u> dosimetry
- Need maximum dose rate to 10 cm² disk @ 7 mg/cm²

Point source input

Photon dose rate from each source

Where do we place a single averaging disk in order to maximize dose?

Offset particle model input

Dose to single averaging disk

+ Mn-54 14.1 mrad/hr

+ Co-60 4.97 mrad/hr

Placement to maximize photon dose

Dose Rate (mrad/hr)	Mn-54	Co-60	Total
Each on-axis (stacked)	15.5	6.00	21.5
0.1 cm from Mn-54	15.5	0.34	15.8
0.7 cm	15.2	0.70	15.9
1.2 cm	15.3	2.65	18.0
1.4 cm	14.4	4.60	19.0
1.45 cm	15.1	4.78	19.9
1.48 cm	12.9	4.91	17.8
1.49 cm	13.4	4.97	18.4
1.5 cm (centered)	14.1	4.97	19.1
1.51 cm	14.8	4.97	19.8
1.52 cm	14.3	5.00	19.3
1.55 cm	13.1	5.14	18.2
1.6 cm	12.7	5.21	17.9
1.8 cm	4.43	5.53	10.0
2.3 cm	0.72	5.88	6.60
2.9 cm (0.1 cm from Co-60)	0.34	6.00	6.35

scenario #6 (multiple cover)

- Using the Multiple Cover Calculator
- Hot particle imbedded in <u>two</u> layers of coveralls (0.7 mm; 0.4 g/cm³), and <u>one</u> heavy cotton shirt (assumed similar to cloth lab coat; 0.4 mm; 0.9 g/cm³)
- Assume air gap of 1.5 mm + 0.5 mm between coveralls and cotton shirt
- Sr-90 in equilibrium with daughter
- 1.3 μ Ci in iron (Z=26; 7.87 g/cm³), cylindrical source, 20 μ m diameter x 40 μ m length
- Depth-dose profile to 100 mg/cm²

Cover model

Multiple cover input

Depth-dose summary

	Total Dose (mrad/hr)
7 mg/cm ²	334
10	326
20	304
30	285
50	252
100	189

scenario #7 (air gap)

- Using the Air Gap Model
- Co-60 point source (1 μCi)
- 10 cm² averaging area
- Tissue depth of 7 mg/cm²
- How does dose vary with an air gap of zero to 5 cm?

Air gap model

Air gap model input

Air gap impact on dose

Air Gap (cm)	Beta	Photon	Total
0	356	12.8	369
0.25	340	7.03	347
0.50	293	4.74	298
0.75	238	3.44	241
1	190	2.59	192
2	82.2	1.06	83.3
3	41.5	0.546	42.0
4	23.7	0.327	24.1
5	14.9	0.216	15.1

scenario #8

- 1 μCi of Co-60 on skin
- 3D source
- With photon dose calculations
- With volume averaging (beta and gamma)
- For the purpose of examining run times and picking reasonable volume

3D source and Volume averaging

Maximum volume averaging depth

	Max Beta Energy (keV)	Max Depth (mg/cm²)
Co-60	318	59.09
Cs-137	514	163.8
Cs-134	658	186.2
Ba-140	1020	295.3
Y-91	1540	604.4

Calculating beta dose

Calculating gamma dose

