Portable Nuclear Moisture- Density Gauges

Linus Dep, Ph.D. Senior Nuclear Physicist

Troxler Electronic Laboratories, Inc. Research Triangle Park, NC, 27709, USA

Outline

- > Compaction of Soil and Asphalt during Construction
- > Portable Nuclear Gauges for Testing Compaction
- Radiological Properties of Portable Nuclear Gauges
- > Safety & Security of Portable Nuclear Gauges

Compaction of Soil and Asphalt Layers

Compaction during construction is essential to increase the load bearing capacity of roads, airfields, building sites, embankments, parking lots, ...

For Soil Layers:

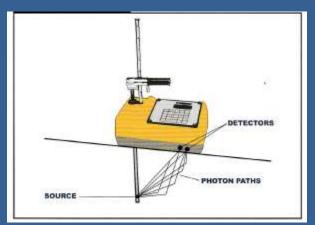
For a given compaction effort, the degree of compaction depends on moisture content.

Compaction of Soil and Asphalt Layers

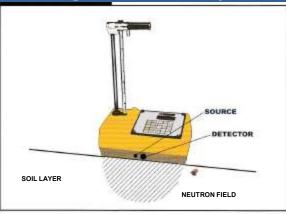
Density (= mass/volume) is a measure of Compaction.

Density and moisture measurements are used for QC/QA during construction.

Measuring Density and Moisture in soils and asphalts is challenging because of the **heterogeneity** of the material.


Use of large sample volumes give better density and moisture estimates

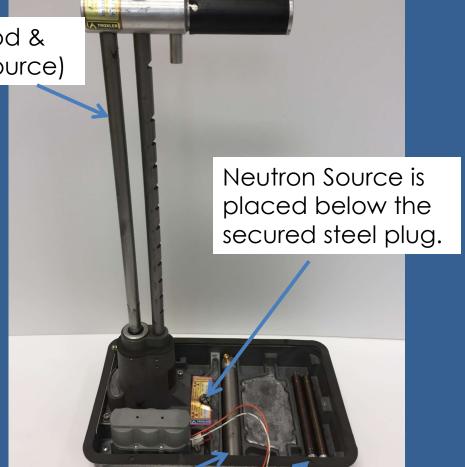
Portable Nuclear Gauges for Testing Compaction (Density & Moisture)


Nuclear gauges use radiation from sealed radioactive sources to scan *large sample volumes* and measure density and moisture.

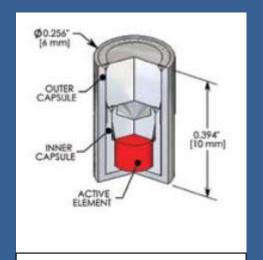
Moisture by using Neutrons (Am-241/Be)

Troxler Portable Nuclear Moisture-Density Gauges

Radiological Specification



Model	3430 & 3440	3430 PLUS & 3440 PLUS
Gamma Source Activity Cs-137 ($T_{1/2} = 30.2 \text{ Yrs.}$)	8 mCi (0.3 GBq)	8 mCi (0.3 GBq)
Neutron Source Activity Am-241/Be (T _{1/2} = 432.2 Yrs.)	40 mCi (1.48 GBq)	40 mCi (1.48 GBq)
Maximum Dose at Surface	21 mrem/hr (0.21 mSv/hr)	31 mrem/hr (0.31 mSv/hr)
Released Year	1986	2006
US Licensing Type	Specific	Specific


Gamma Source is placed inside the steel rod close to the tip.

G-M Detector for Gamma

He-3 Detector for Neutron

Sealed-Sources

Source Capsulet

Gamma Source Nominal Activity	Cs-137 8 mCi (0.3 GBq)
Neutron Source Nominal Activity	Am-241/Be 40 mCi (1.48 GBq)
Source Type	Sealed Source Special Form IAEA Category 4 C66535 for Cs-137 C66545 for Am-241/Be
Source Housing	Doubly encapsulated Stainless steel

Source Rod

Source Rod showing the placement of the source capsule

Tungsten Bio-Shield & Shutter

Tungsten Bio-Shield and Shutter (sliding block) system is used to keep the Gamma Source shielded in SAFE position.

Bottom View: Tungsten Shutter (sliding block) in CLOSED position.

Source Rod Inspection

New Gauges: Source Rod Weld Inspection

-One source rod welded without a sealed source per month This rod is inspected by Radiation Safety Officer and Quality Officer -Every year, pick two such source rods randomly and send for metallurgical study to verify the quality of the weld

Old gauges coming for repair / service/ and calibration

- -Source rod weld is inspected
- -Shutter mechanism (sliding block) is inspected
- -Source rod motion (for binding/jamming) checked and serviced

Prototype Gauge Testing

ANSI N43.8: Classification of Industrial Ionizing Radiation Gauging Devices

Gauges Tested for mechanical, structural, And radiological integrity.

Tests include:

- > Temperature Extremes
- Vibration
- Drop Test

Highest dose rates

- ➤ at the surface of the gauge ~ 21 mrem/hr (0.21 mSv/hr)
- > at 1 m from the gauge ~ 0.7 mrem/hr (0.007 mSv/hr)

US Regulatory Requirements

- License to own & operate
- Operator training
- Maintaining RAD safety program
- Monitor operator exposure to radiation
- Radioactivity leak testing
- Annual fees for regulatory agencies
- Multi state usage Reciprocity
- HAZMAT training
- > Type A certified shipping container
- Shipping papers

Portable Nuclear Gauges to Measure Density & Moisture

- Accurate- meets industry requirements (50+ years)
- Fast- Measurements in 1 to 4 minutes
- Test large sample volumes
- Safe to operate
 Security against radiation exposure to public
 (Gauge design & Regulatory restrictions)

Model 3430 PLUS

Accidents, Negligence & Mishandling

Gauge in a Fire

Gauge ran over

Operator Mishandling

No radioactive material was released from any of the Source Capsules.

50+ Years of use of these gauges in real field conditions, none of the Source Capsules have been found to be breached.