

RAMP Code Overview

Fall 2020 RAMP USERS GROUP VIRTUAL MEETING

October 30, 2020

Caitlin Condon

Pacific Northwest National Laboratory

PNNL-SA-157367

Proudly Operated by Ballelle Since 1965

What codes are in RAMP?

Emergency Response

Radiological Assessment System for Consequence Analysis (RASCAL)

- Fast running software used in radiological incidents to assess off-site dose consequences
- Evaluates atmospheric releases from nuclear power plants, spent fuel storage pools and casks, fuel cycle facilities, and material handling facilities

Estimates projected radiation doses from a plume to people downwind

Emergency Response

Turbo FRMAC

- Turbo FRMAC performs complex calculations to quickly evaluate radiological hazards during an emergency response by assessing impacts to the public, workers, and the food supply.
- Developed and maintained by Sandia National Laboratories
- Wide variety of radiological incidents, such as:
 - Radiological Dispersal Devices (RDDs)
 - Nuclear Power Plant Emergencies
 - Fuel Handling Accidents
 - Transportation Accidents

https://ramp.nrc-gateway.gov/content/turbo-frmac

Environmental Assessment

GENII

- Environmental Assessment Code for estimating radionuclide concentrations in the environment and dose to humans and biota from acute and chronic radiological releases
- Atmospheric and surface water transport models, or options for user input of measured contamination levels
- Part of DOE Safety Software Central Registry

Environmental Assessment

MILDOS

- Estimates the radiological impacts from airborne emissions from uranium recovery facilities
- Calculates the radiological dose received by general population within an 80-km radius of an operating facility
- Calculates air and ground concentrations of radionuclides

Environmental Assessment

Decontamination and Decommissioning (DandD)

- DandD estimates annual dose from residual radioactivity in soils and on building surfaces after decommissioning
- Assesses compliance with the dose criteria of 10 CFR Part 20, Subpart E
- NRC has predefined conceptual models for the scenarios along with default parameter distributions (based on NUREG/CR-5512, Volumes 1 and 3)

RADionuclide, Transport, Removal, and Dose Estimation (RADTRAD)

- Performs dose calculations for design-basis accidents at the exclusion area boundary (EAB), low population zone (LPZ), and control room (CR)
- To show compliance with nuclear plant siting criteria

HABIT

- Evaluation of control room habitability in the event of accidental spills of toxic chemicals or radionuclides
- EXTRAN determines the release rate due to leaks or ruptures of liquid or gas tanks
- CHEM models the chemical dilution by flows in the control room and determines the chemical exposure to control room personnel.

GASEOUS AND LIQUID EFFLUENTS (GALE)

- Four codes that calculate the gaseous and liquid effluent releases from pressurized-water reactors (PWRs) and boiling-water reactors (BWRs).
- Calculate the source term of radionuclides generated by a NPP during routine operation using fixed ANSI/ANS parameters
- Updated recently to GALE 3.2

RADTRAN

- Risk and consequence analysis of radioactive material transport
- Generally used for train or truck transportation routes
- Incident free and accident modelling

Legend

V -Traffic velocity
d - Distance fromRAM vehicle to traffic in opposite direction
x - Distance from RAM vehicle to passing vehicle

MIN - Minimum following distance

NRCDose

- User-friendly graphical user interface (GUI) for the LADTAP II, GASPAR II, and XOQDOQ programs
- LADTAP II is the liquid pathway modeling during routine operation.
- GASPAR II is the gaseous effluent pathway modeling during routine operation.
- XOQDOQ is the atmospheric dispersion model for evaluating routine releases from nuclear power plants. Calculates annual relative effluent concentrations and annual average relative deposition, at locations specified by the user

Other Dose Assessment

VARSKIN

- A Computer Code for Skin Contamination Dosimetry
- Calculate occupational dose to the skin resulting from exposure to radiation
- Highest exposure over a contiguous 10 cm² of skin at a tissue depth of 0.007centimeters (7 mg/cm²)
- Five different source configuration simulations of point, disk, cylinder, sphere, and slab sources

Other Dose Assessment

RADIOLOGICAL TOOLBOX

Electronic access to data that underlies the field of radiation protection

Table 1.1. General Description of the Radiological Toolbox Data Elements

Data Collections	Description of Data Collection
Biological Data	Biokinetic models, reference anatomical data, bioassay data, and
	summary information on radiation health effects
Decay Data	Detailed information on the radiations emitted by radionuclides and members of serial decay chains
Dose Coefficients	Internal dose coefficients for intakes of radionuclides by workers and
	members of the public and external dose coefficients for members of the public exposed to radionuclides external to the body
Dose Calculation	Calculation of dose for worker or member of the public exposed to a
	radionuclide mixture
Early Inhalation	Absorbed dose coefficient integrated over a user-specific time period
	following an inhalation intake
Element Data	Radiation interaction coefficients with elements for alpha, electron,
MarialData	photon, and neutron radiations
Material Data	Radiation interaction coefficients with materials for alpha, electron, photon, and neutron radiations
Public Exposure Data	Summary information on radiation exposures to natural background
	radiation and from medical exposure
Radiation Field Data	Organ doses for workers resulting from idealized photon and neutron
	radiation fields
Risk Coefficients	Nuclide-specific risk coefficients for public exposure
Supplemental Data	Collection of reference information ranging from SI units to numerical
**	limits on the activity content of radionuclides in transport

U.S. NRC NUREG/CR-7166 https://ramp.nrc-gateway.gov/system/files/b0a46c847db8f5f5e40fe236731b9fe6/Radiological-Toolbox-Users-Guide.pdf

Other Dose Assessment

PHANTOM WITH MOVING ARMS AND LEGS (PIMAL)

- Generate quantitative figures of merit regarding positioning arms and legs in different geometries
- To assist users for performing dosimetry calculations for exposed individuals
- Create input file for the Monte Carlo N-Particle radiation transport code

Atmospheric Assessment

ATMOSPHERIC ASSESSMENT CODES

Three atmospheric codes calculate X/Q values using the Gaussian plume model

ARCON calculates X/Q values in the control room from accidental release

PAVAN calculates X/Q values at two offsite locations from accidental release

Exclusion Area Boundary (EAB)

Low Population Zone (LPZ)

XOQDOQ (within NRCDose) computes the annual X/Q values from routine emissions at receptor locations beyond the licensee's property boundary

Code Functions and Data Flow

Overlapping Capabilities

Questions?

Thank You!

