

Consolidated Code Prototype Atmospheric Engine

FALL 2020 USERS GROUP VIRTUAL MEETING

October 30, 2020

U.S. Nuclear Regulatory Commission Headquarters

Saikat Ghosh and Jeremy Rishel

Pacific Northwest National Laboratory

Goals of the Prototype

- Modernize codes, increase efficiency, and to allow for easy maintenance and future modifications
- Demonstrate the concept of three "Pillars"
- Consolidate the atmospheric codes into a single "engine"
- Build a flexible data transfer system with XML
- Incorporate scientific improvements for atmospheric dispersion
 - Direct measurements of turbulence
 - Similarity theory currently implemented in USEPA regulatory models (e.g., AERMOD)

nsolidated Engines

Standard Data Input/ Transfer/ Output

ingle User Friendly Interface

Current Atmospheric Dispersion Codes

- Three distance scales to consider:
 - ARCON: Near-field (~100s meters);
 design basis accidents (DBA's) at
 the control room (CR) and
 technical support center (TSC).
 - PAVAN: Mid-field (~10 km); DBA's at the exclusion area boundary (EAB) and low population zone (LPZ).
 - XOQDOQ: Far-field (out to ~80 km); normal effluent releases for sensitive receptors and population.

Atmospheric Dispersion "Engine"

- A single "atmospheric engine" would perform the same calculations in ARCON, PAVAN, and XOQDOQ that are currently used for reviewing reactor license applications.
- The methods implemented in the "atmospheric engine" would meet the requirements for near-, mid-, and far-field dispersion calculations.

	Consolidated Atmospheric Module Choices			
Current Code	Meteorology	Source	Dispersion	Receptor
ARCON	Wind Speed/Direction - Hourly - Joint Frequency Distribution Temperature Turbulence - Pasquill-Gifford - Desert Curves - Direct Measurement Wind Measurement Heights	Ground Level, Elevated or mixed-mode Type: ground, vent, or stack Height (vent or stack release) - Vent or stack release - Plume rise (momentum/buoyancy) - Effective height (topography) Building area (ground or vent release) Vertical velocity, stack flow, and radius Terrain Height Plume Decay/Depletion Modified y/Q for recirc or stagnation	Puff Plume Meander Entrainment	Direction to the Source Distance to Receptor Height Elevation Difference
PAVAN				
XOQDOQ				

Prototype Development Concept

Select Dispersion Distance

□ Near-field (RG1.194)

☐Mid-field (RG1.145)

☐ Far-field (RG1.111)

Import Meteorology

Upload met file (RG1.23 format)

Wind Sensor Height

Surface Roughness

0.2

Import Terrain

Source-Receptor

Source Info

☐Ground Level Vertical Velocity (m/s)		5.0
■Vent Release	o =	45.7
□Elevated Stack	Stack Flow (m ³ /s)	15.7
□ Diffused Source	Stack Radius (m)	1.3

Atmospheric Dispersion Engine

New Planned Features

- Interactive interface with an underlying code that reduces the burden on the user with minimum input
- Users do not need to externally calculate stability
 - Internal routines to compute stability classes based on ΔT or σ_{θ}
- Users do not need to generate joint frequency distribution (JFD) of meteorological data
 - Input standard hourly meteorological data in the RG 1.23 format
 - User customized format
- Additional options to estimate diffusion
- Features to export and visualize output

XML Data Transfer


```
XML Implementation
<?xml version="1.0"?>
<input>
   <modeltype>near-field</modeltype>
   <sourceinfo>
       <type>Elevated</type>
       <stackHeight>10.0</stackHeight>
       <radius>1.3</radius>
       <buildingArea>100.0
   </sourceinfo>
   <receptorinfo>
       <intakeHeight>8.0</intakeHeight>
       <distance>200.0</distance>
       <direction>220.0</direction>
   </receptorinfo>
   <metinfo>
       <metfile>"RG1.23 format.csv"</metfile>
       <sensorHeight>2.0</sensorHeight>
   </metinfo>
</input>
```

- Currently, fixed format text files (card input) is rigid and difficult to modify
- XML would make data input universal and adaptable
- XML easily allows new data to be added (or removed) and do not affect the underlying code

Diffusion Coefficients

- Gaussian plume model is the workhorse for dispersion calculations
- Why so popular?
 - Produces reasonable results
 - Easy mathematics
 - Quick running
 - Results consistent with "averaged" turbulence
- Dispersion model will be designed to allow calculations of σ_v and σ_z using three options:
 - Pasquill-Gifford (P-G) coefficients based on stability category
 - Dispersion coefficients computed from measured turbulence ($\sigma_{\theta}/\sigma_{v}$ and σ_{e}/σ_{w})
 - Dispersion coefficients from internally calculated micrometeorological variables based on similarity theory

Proudly Operated by Battelle Since 1965

P-G Method Technical Basis

- Based on experimental measurements
 - Project Prairie Grass, 1956
 - Seventy, 10-minute SO₂ releases
 - 0.5 m release height
- Idealized conditions:
 - Nebraska = Flat terrain, open country
 - Homogenous, 5-6 cm grassy surface
 - July-August summer season
 - Daytime and nighttime
 - Wind speed > 2 m/s
- Measurement locations:
 - Sampling arcs downwind to 800 m
 - Vertical height at 1.5 m

P-G Limitations

- Represent a finite number of atmospheric conditions
- Goes directly to dispersion without explicit use of turbulence
- It applies primarily to near surface releases
- Actual diffusion coefficients can be 2 to 10 times greater than P-G estimates
- However, simple to use and found in most regulatory models
 - Environmental Protection Agency (EPA) ISC
 - Nuclear Regulatory Commission (NRC) PAVAN and XOQDOQ

Figure shows the ratios of concentrations predicted by an open-terrain dispersion model (using P-G coefficients only) to observed centerline concentrations in wakes as a function of wind speed (Ramsdell & Fosmire, 1990)

- Advanced Diffusion Methods
- Non-LWRs may be located anywhere
- A better approach would be to use direct measurements of turbulence
 - Present-day wind instrumentation (e.g., 3-D sonic anemometer) can measure turbulent fluctuations of horizontal and vertical wind
 - Minimal flow distortion
 - Withstand harsh weather conditions
 - Diffusion coefficients can be directly calculated using "known" functions (e.g., Hanna 1982, Irwin 1980) that relate turbulence measurements to diffusion
 - Diffusion coefficients would be truly representative of the site and not be "binned" by discrete stability classes

Campbell Scientific Sonic Anemometer

Questions?

- Saikat Ghosh:
 - saikat.ghosh@pnnl.gov
 - 509-375-6989
- Jeremy Rishel:
 - jeremy.rishel@pnnl.gov
 - 509-375-6974

