

RAMP Atmospheric Primer: Proudly Operated by Battele Since 1965 ARCON

FALL 2020 USERS GROUP VIRTUAL MEETING

October 26 – October 30, 2020

U.S. Nuclear Regulatory Commission Headquarters

JEREMY RISHEL

Atmospheric Scientist
Pacific Northwest National Laboratory

RAMP Atmospheric Codes Overview

- Three atmospheric codes for reactor licensing:
 - ARCON
 - PAVAN
 - XOQDOQ
- Other atmospheric codes in RAMP:
 - RASCAL (for emergency response)
 - HABIT (for assessing control room habitability from chemical releases)

Why Three Atmospheric Codes?

- Three dispersion distances to consider:
 - ARCON: Near-field (~100s meters); design basis accidents (DBA's) at the control room (CR) and technical support center (TSC).
 - PAVAN: Mid-field (~10 km);
 DBA's at the exclusion area boundary (EAB) and low population zone (LPZ).
 - XOQDOQ: Far-field (out to ~80 km); normal effluent releases for sensitive receptors and population.

ARCON Overview: Purpose

Purpose:

- Atmospheric Relative CONcentrations in Building Wakes
- Calculate relative air concentrations (χ/Q's) to evaluate control room and technical support center habitability for design basis accidents (10 CFR Part 50)
- Near-field dispersion

Users:

- Nuclear Regulatory Commission (NRC)
- Department of Energy (DOE)
 - Savannah River Site, South Carolina
 - Hanford Site, Washington

Proudly Operated by Ballelle Since 196

ARCON Overview: Related Guidance

- RG 1.206, C.I.2.3.4: Short-Term Atmospheric Dispersion Estimates for Accident Releases
- SRP 2.3.4: Short-Term Atmospheric Dispersion Estimates for Accident Releases
- RG 1.194: Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants (2003)
- NUREG/CR-6331: Atmospheric Relative Concentrations in Building Wakes (1997)
 - ARCON

ARCON Overview: Development of Northwest History History

- Developed at Pacific Northwest National Laboratory (PNNL) for the NRC
 - ARCON96
 - Compile Date: June 25, 1997
 - Superseded an earlier version of the code (ARCON95) and included modest changes to how the χ/Q averages were processed.
 - ARCON2
 - Compile Date: September 3, 2020
 - New user interface and incorporates published (Ramsdell and Fosmire, 1998) diffusion adjustment factors

ARCON Overview: Technical Basis

- Straight-line Gaussian plume model
 - Estimates relative concentrations (χ /Q) for defined averaging periods
- Includes enhanced diffusion coefficients:
 - Pasquill-Gifford (most models)
 - Building wake (some models)
 - Low wind speed (few models)
- The building wake and low wind speed diffusion correction factors are based on diffusion data collected in experiments
 - Experiments conducted under a wide-range of meteorological conditions, including low wind speed, when wake effects are small.

ARCON Overview: Standard Diffusion

Ramsdell, Jr., J. V., and C. J. Fosmire. 1998. "Estimating Concentrations in Plumes Released in the Vicinity of Buildings: Model Development." Atmospheric Environment, 32:1663–77.

ARCON Overview: Enhanced Diffusion

Ramsdell, Jr., J. V., and C. J. Fosmire. 1998. "Estimating Concentrations in Plumes Released in the Vicinity of Buildings: Model Evaluation." Atmospheric Environment, 32:1679–89.

ARCON Overview: Diffusion Summary

- Models using standard diffusion coefficients will tend to over-predict concentrations in the near field at low (i.e., < 4 m/s) wind speeds.
 - This is primarily because the initial Pasquill-Gifford diffusion studies did not consider near-field or low wind speed cases
 - Diffusion curves were "extrapolated" back to the source
- ARCON enhanced diffusion coefficients largely eliminate the bias at lower wind speeds.
 - Even still, experimental data suggests ARCON might slightly over-predict at low wind speeds

ARCON

ARCON Inputs & Reports

• Inputs:

- Case Information
- Meteorology
- Source/Receptor
- Default Data

Reports

- Log file (.LOG)
- Cumulative Frequency Distribution (.CFD)
- Extended Output (.EXT)

ARCON Inputs: Case Information

- Case information includes:
 - Site
 - Analyst Name
 - Case Description
- Site and analyst information is included at the top of each output file.

ARCON Inputs: Case Information of the Control of th

ARCON Inputs: Meteorology

- For meteorology, need to specify:
 - Wind measurement heights (lower and upper)
 - Wind speed unit (m/s, mph, knots)
 - Path to hourly meteorological data files
 - Up to 10 years, in chronological order
 - Either separate files or one large, continuous file

ARCON Inputs: Meteorology (cont'd)

- Hourly file including:
 - Identifier
 - Year
 - Julian day
 - Hour
 - Wind direction and wind speed (lower)
 - Stability class (1-7)
 - Wind direction and wind speed (upper)

CPPAL	92	1 1	130	22	4	126	25
CPPAL	92	1 2	118	16	4	111	19
CPPAL	92	1 3	120	14	4	115	18
CPPAL	92	1 4	99	14	4	107	16
CPPAL	92	1 5	122	19	4	119	22
CPPAL	92	1 6	113	17	4	110	18
CPPAL	92	1 7	105	22	4	96	25
CPPAL	92	1 8	117	22	4	113	24
CPPAL	92	1 9	116	25	4	114	29
CPPAL	92	110	131	29	4	128	35
CPPAL	92	111	133	29	4	133	33
CPPAL	92	112	148	21	4	150	25
CPPAL	92	113	151	27	4	153	36
CPPAL	92	114	148	25	4	150	31
CPPAL	92	115	144	25	4	152	32

- Wind direction entered in degrees direction from
 - Wind from the north: 360
 - Wind from the east: 90
 - Wind from the south: 180
 - Wind from the west: 270
 - Wind speed is reported to the nearest "tenth", without decimal

ARCON Inputs: Meteorology Example

ARCON 2.0 C:\ARCON2\Test_Cases\arcon2_ex4.rsf	- □ ×
<u>F</u> ile Calc <u>u</u> late <u>H</u> elp	
Source-Receptor Meteorology Program Defaults Lower Measurement Height (m) Upper Measurement Height (m) 63.9	d Speed Unit m/s mph knots Add Remove Clear

ARCON Inputs: Source

- Type:
 - Ground
 - Vent ("mix-mode")
 - Stack
- Height:
 - For vent or stack release only
 - -1 to 300 m
 - Plume rise not calculated; calculate separately and add to height

ARCON Inputs: Source (cont'd)

- Vertical velocity: compared to wind speed (vertical velocity/wind speed)
 - Vent:
 - If > 5, exhaust is elevated
 - If < 1, exhaust trapped in wake
 - In between, partial plume in wake (mix-mode)
 - Stack: stack-tip downwash
 - If < 1.5, downwash
- Building area:
 - Ground or vent release only
 - Projected building area upwind of the receptor
 - 0.1 to 10,000 m²

ARCON Inputs: Receptor

- Distance to receptor
 - ≤ 10,000 m
- Height (e.g., control room intake)
 - ≤ 100 m
- Elevation difference
 - Difference between source elevation and receptor elevation
 - > 0 if source elevation > receptor elevation
 - < 0 if source elevation < receptor elevation
 - -1,000 m to 1,000 m
- Direction to source
 - Use meteorological (compass) coordinate system
 - Reference frame is from the receptor
 - Look "upwind" toward source

ARCON Inputs: Source-Receptor Northwest Example

ARCON Inputs: Program Defaults

- Default inputs that can be changed in ARCON:
 - Surface roughness (meters)
 - Used in scaling the wind speed to release height
 - Default value: 0.2 meters
 - Wind direction window (degrees)
 - Plumes within the direction window assumed to affect the receptor
 - Default value: 90º (± 45º from plume centerline)
 - Initial diffusion coefficients (m)
 - For diffuse area sources
 - Adjustments made to the point source diffusion coefficients
 - Recommend value: depends on source
 - Default value: 0 m
 - Minimum wind speed (m/s)
 - Minimum wind speed used to define "calm" winds
 - Wind direction not used; plume is conservatively placed in all directions
 - Default value: 0.5 m/s

ARCON Inputs: Program Default Site by Battle Since 1965 (Cont'd)

- Default inputs that can be changed in ARCON:
 - Averaging Sector Width Constant
 - Used in the sector-average model
 - 95% of the plume is within ± 2 sigma-y
 - Recommended value: between 4 and 6; default of 4.3
 - Hours in Averaging Periods
 - Computed averaging times
 - Used for different NRC design basis accident intervals
 - Recommend values: 1, 2, 4, 8, 12, 24, 96, 168, 360, 720 hours
 - Minimum Number of Hours in Periods
 - Recommend values: 1, 2, 4, 8, 11, 22, 87, 152, 324, 648 hours

ARCON Inputs: Program Defaults Operated by Battelle Since 1965 Example

ARCON Outputs

ARCON Averages:

- Short-term average (≤ 8 hours):
 - Centerline χ/Q only
- Longer-term average (> 8 hours):
 - Centerline χ/Q for first 8 hours and sector-average χ/Q for rest of period
 - Sector average accounts for the fact that the plume does not exactly travel down the centerline over longer averaging periods

ARCON Outputs (cont'd)

- Three report files:
 - Log (.LOG) file
 - Primary output file summarizing the model results
 - 95th percentile values
 - Cumulative Frequency Distribution (.CFD) file
 - Contains the CFD for each averaging period
 - Extended (.EXT) file
 - Values for scenario-dependent parameters calculated during program initialization
 - Listing of the meteorological data read by the program
 - Listing of the hourly centerline and sector-average χ/Qs
 - Frequency distributions for each of the averaging periods.

ARCON Reports: LOG File

DISTRIBUTION	N SUMMARY D	ATA BY AVER	AGING INTER	VAL						
AVER. PER.	1	2	4	8	12	24	96	168	360	720
UPPER LIM.	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
LOW LIM.	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06
ABOVE RANGE	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
IN RANGE	2585.	2887.	3360.	4055.	4603.	5824.	8381.	8633.	8461.	8137.
BELOW RANGE	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
ZERO	6197.	5892.	5413.	4706.	4171.	2939.	317.	0.	0.	0.
TOTAL X/Qs	8782.	8779.	8773.	8761.	8774.	8763.	8698.	8633.	8461.	8137.
% NON ZERO	29.44	32.89	38.30	46.28	52.46	66.46	96.36	100.00	100.00	100.00
95th PERCENT	TILE X/Q VA	LUES								
	9.73E-04	9.05E-04	8.59E-04	7.87E-04	6.42E-04	4.79E-04	3.00E-04	2.63E-04	2.31E-04	2.25E-04

95% X/Q for standard averaging intervals

0	to	2 hours	9.73E-04
2	to	8 hours	7.26E-04
8	to	24 hours	3.25E-04
1	to	4 days	2.40E-04
4	t.o	30 days	2.14E-04

HOURLY VALUE RANGE

	MAX X/Q	MIN X/Q
CENTERLINE	1.31E-03	1.39E-04
SECTOR-AVERAGE	8.23E-04	8.69E-05

ARCON Reports: CFD File

Program Run: 8/ 7/2018 at 08:06:49

User: Project:

X/Q CUMUI	ATIVE F	REQUENC	CY DISTE	RIBUTIONS	1						
XOQ	1	2	4	8	XOQ	12	24	96	168	360	720
Abv. Lim.	0.	0.	0.	0.	Abv. Lim.	0.	0.	0.	0.	0.	0.
9.120E-03	0.	0.	0.	0.	9.120E-03	0.	0.	0.	0.	0.	0.
8.318E-03	0.	0.	0.	0.	8.318E-03	0.	0.	0.	0.	0.	0.
7.586E-03	0.	0.	0.	0.	7.586E-03	0.	0.	0.	0.	0.	0.
6.918E-03	0.	0.	0.	0.	6.918E-03	0.	0.	0.	0.	0.	0.
6.310E-03	0.	0.	0.	0.	6.310E-03	0.	0.	0.	0.	0.	0.
5.754E-03	0.	0.	0.	0.	5.754E-03	0.	0.	0.	0.	0.	0.
5.248E-03	0.	0.	0.	0.	5.248E-03	0.	0.	0.	0.	0.	0.
4.786E-03	0.	0.	0.	0.	4.786E-03	0.	0.	0.	0.	0.	0.
4.365E-03	0.	0.	0.	0.	4.365E-03	0.	0.	0.	0.	0.	0.
3.981E-03	0.	0.	0.	0.	3.981E-03	0.	0.	0.	0.	0.	0.
3.631E-03	0.	0.	0.	0.	3.631E-03	0.	0.	0.	0.	0.	0.
3.311E-03	0.	0.	0.	0.	3.311E-03	0.	0.	0.	0.	0.	0.
3.020E-03	0.	0.	0.	0.	3.020E-03	0.	0.	0.	0.	0.	0.
2.754E-03	0.	0.	0.	0.	2.754E-03	0.	0.	0.	0.	0.	0.
2.512E-03	0.	0.	0.	0.	2.512E-03	0.	0.	0.	0.	0.	0.
2.291E-03	0.	0.	0.	0.	2.291E-03	0.	0.	0.	0.	0.	0.
2.089E-03	0.	0.	0.	0.	2.089E-03	0.	0.	0.	0.	0.	0.
1.905E-03	0.	0.	0.	0.	1.905E-03	0.	0.	0.	0.	0.	0.
1.738E-03	0.	0.	0.	0.	1.738E-03	0.	0.	0.	0.	0.	0.
1.585E-03	0.	0.	0.	0.	1.585E-03	0.	0.	0.	0.	0.	0.
1.445E-03	0.	0.	0.	0.	1.445E-03	0.	0.	0.	0.	0.	0.
1.318E-03	0.	0.	0.	0.	1.318E-03	0.	0.	0.	0.	0.	0.
1.202E-03	74.	47.	20.	4.	1.202E-03	0.	0.	0.	0.	0.	0.
1.096E-03	211.	148.	76.	12.	1.096E-03	0.	0.	0.	0.	0.	0.
1.000E-03	382.	272.	171.	57.	1.000E-03	0.	0.	0.	0.	0.	0.
9.120E-04	565.	418.	298.	154.	9.120E-04	5.	0.	0.	0.	0.	0.
8.318E-04	801.	643.	510.	308.	8.318E-04	41.	0.	0.	0.	0.	0.
7.586E-04	1084.	905.	769.	522.	7.586E-04	128.	0.	0.	0.	0.	0.
6.918E-04	1318.	1131.	1012.	755.	6.918E-04	275.	2.	0.	0.	0.	0.
6.310E-04	1553.	1343.	1246.	1023.	6.310E-04	476.	24.	0.	0.	0.	0.
5.754E-04	1813.	1670.	1541.	1404.	5.754E-04	749.	88.	0.	0.	0.	0.
5.248E-04	1998.	1936.	1821.	1706.	5.248E-04	1051.	228.	0.	0.	0.	0.
4.786E-04	2170.	2142.	2028.	1923.	4.786E-04	1439.	439.	1.	0.	0.	0.

ARCON Reports: EXT File

Subroutine XOQCALC5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.20 1.60 1.40 1.90 1.70 2.20 2.49 2.89 2.10 2.69 2.49 2.69 2.49 2.69 3.09 2.79 2.30 2.79 2.30 2.79 2.30	2.34 1.78 1.68 1.50 2.06 1.68 2.34 2.25 2.71 3.27 3.09 2.34 3.37 2.90 2.99 2.90 3.27 2.62 3.27 4.12 4.12	126 111 115 107 119 110 96 113 114 128 133 150 153 150 153 150 152 124 115 137 123 118 121 124 121	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.04E-03 8.85E-04 9.57E-04 9.43E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.55E-04 5.55E-04 6.00E-04 5.91E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
24	4	3.19	3.93	122	0.00E+00	0.00E+00
25	4	3.29	4.02	121	0.00E+00	0.00E+00
26	4	3.29	4.40	126	0.00E+00	0.00E+00
27	4	3.49	4.58	130	0.00E+00	0.00E+00
28	4	3.09	4.21	137	7.67E-04	4.80E-04
29	4	3.29	4.49	140	7.30E-04	4.58E-04

ARCON Reports Example

Questions?

- Jeremy Rishel
 - Mr. Rishel supports the RAMP
 Atmospheric Codes, including
 ARCON, PAVAN, and XOQDOQ. In
 addition, Mr. Rishel supports the
 development of the NRC's RASCAL
 emergency response code.
 - Email: jeremy.rishel@pnnl.gov
 - Phone: 509-375-6974

