Skin dosimetry associated with accidents involving Tc99m, Y90 and F18, I123, I131, In111, Lu177

(The Model is key!)

Bill Thomson

Head of Physics and Nuclear Medicine City Hospital

> Bill.thomson@nhs.net whthomson@gmail.com

Set the Scene - the 'Phone call'

- Incidents Phone call
 - "X has just found Tc99m on their fingers"
 - "1GBq Tc99m has sprayed onto Z's gloves in the radiopharmacy"
 - "Y90 was found on the doctor's gloves after administration"

Fortunately very low incidence, but skin doses can be very high Calculation of Dose (ICRP) - Hp(0.07) averaged over 1cm²

• Activity ? Area ? Time?

RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002

D. Delacroix*
J. P. Guerre**
P. Leblanc**
C. Hickman

ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing

Data Sources?

VARSKIN v6.2 Software from RAMP

Allows protective layers, air gaps etc.

^{*} Commissariat à l'Energie Atomique, CEA/DAM - Ile de France, France **Commissariat à l'Energie Atomique, CEA/Saclay, France

Data Presented – APOLOGY!

							Prob > r und									
	anti_nucleus	event_file	event_number	event_time	Nat_file	multiplicity	n_above_lb	n_below_fb	n_fb	primary_tracks	prod_time	pt	run_number	vertex_x	vertex_y	vertex_z
anti_nucleus	1.00000	-0.06117 <.0001	-0.04428 <.0001	-0.15406 -<.0001	<.0001	0.61380 <.0001	0.28379 <.0001	- 3	<.0001	0.63107 <.0001	4.00927 <.0001	<.0001	-0.18519 <.0001	<.0001	<.0001	0.57078 <.0001
event_file	-0.05117 <.0001	1.00000	-0.17578 < 0001	0.35877 <.0001	1.00000	0.03786 <.0001	0.02324 <.0001		-0.00421 <.0001	0.05387 <.0001	0.61721 <.0001	0.00497 <.0001	0.31135 <.0001	0.01435 <.0001	0.01435 <.0001	0.01441 <.0001
event_number	-0.04428 +.0001	-0.17578 <.0001	1.00000	0.02782 <.0001	-0.17576 <.0001	-0.06958 <.0001	-0.03303 <.0001		-0.06899 <.0001	-0.07290 <.0001	-0.13617 <.0001	0.00064 <.0001	0.09952 <.0001	-0.08885 <.0001	-0.08884 <.0001	-0.08883 <.0001
event_time	-0.15408 -1.0001	0.35877	0.02782 <.0001	1.00000	0.35877 <.0001	-0.15711 <.0001	-0.07261 <.0001		-0.16606 <.0001	-0.15021 -0.0001	0.04217 <.0001	0,00226	0.95529	-0.22068 -<.0001	-0.22068 -1.0001	-0.22067 <.0001
hist_file	-0.05116 <.0001	1,00000	-0.17576 4.0001	0.35877	1.00000	0.03786	0.02324		-0.00421 <.0001	0.05388	0.61722 <.0001	0.00497 <.0001	0.31134	0.01435 <.0001	0.01435 <.0001	0.01441
multiplicity	0.61390 <.0001	0.03786	-0.00958 <.0001	-0.15711 <.0001	0.03786 <.0001	1,00000	0,40685 <.0001		0.90806	0.97085	9.07072	0.00010 <.0001	-0.17419 <.0001	0.82273	0.82274 <.0001	0.82266
n_above_lb	0.28379 <.0001	0.02324	-0.03303 <.0001	-0.07201 -4.0001	0.02324 <.0001	0.40685 <.0001	1.00000		0.43895	0.41091	0.04266 <.0001	0.00438 <.0001	-0.07636 <.0001	0.33529	0.33530 <.0001	0.33527
n_below_lb		1	1				3	12			1	1				
n_lb	0.58400 <.0001	-0.00421 -4.0001	-0.06899 <.0001	-0.10606 4.0001	-0.00421 <.0001	0.90805	0.43895 <.0001		1.00000	0.90911	0.01140 4.0001	0.00699	-0.18194 <.0001	0.75936 <.0001	0.75936 <.0001	0.75925 <.0001
primary_tracks	0.63107	0.05387	-0.07290 <.0001	-0.15021 <.0001	0.05388	0.97085	0.41031 <.0001		0.90911	1.00000	0.09648 <.0001	0.01009 <.0001	-0.16794 <.0001	0.84798	0.84798	0.84791
prod_time	-0.00927 <.0001	0.01721	-0.13817 <.0001	0.04217 4.0001	0.01722 <.0001	0.07072 <.0001	0.04266		0.01140	0.09648	1.00000	0.00753 <.0001	0.05690	0.03509	0.03509 4.0001	0.03516
pt	0.00602	0.00497 <.0001	0.00064	0.00226 4.0001	0.00497 <.0001	0.00910 <.0001	0.00438		0.00699 4.0001	0.01009	0.00753 <.0001	1.00000	0,00249	0.00688	0.00688 4.0001	0.00689 <.0001
run_number	-0.16519 <.0001	0.31135 <.0001	0.09952	0.96529 <.0001	0.31134 <.0001	-0.17419 <.0001	-0.07636 <.0001	- 1	-0.18194 <.0001	-0.16794 <.0001	0.05690	0.00249	1.00000	-0.23948 <.0001	-0.23948 <.0001	-0.23945 <.0001
vertex_x	0.57079	0.01435	-0.08885 <.0001	-0.22088 <.0001	0.01435 <.0001	0.82273 <.0001	0.33529		0.75936 <.0001	0.84798	0.03509	0.00688 < 0001	-0.23948 -4.0001	1.00000	1,00000	0.99998
vertex_y	0.57079	0.01435	-0.08884 <.0001	-0.22068 <.0001	0.01435 <.0001	0.82274	0.33530		0.75936	0.84798 <.0001	0.03509	0.00688 <.0001	-0.23948 <.0001	1.00000	1.00000	0.99998
vertex_z	0.57078	0.01441	-0.08883 < 0001	-0.22067	0.01441	0.82266	0.33627		0.75925	0.84791	0.03516	0.00689	-0.23945 <.0001	0.99998	0.00008	1.00000

Some data tables included for later reference if needed; not discussed

Radionuclides - Discussed

		range	
	Electron / Beta	Tissue (mm)	Use
Tc99m	120keV (11%)	0.3mm	Diag. >90% NM
F18	634keV (97%)	1.7mm	Diag. PET
Y90	2.28MeV (100%)	9.2mm	Therapy

Radionuclides – Also given

		range	
	Electron	Tissue (mm)	Use
Tc99m	120keV (11%)	0.3mm	Diag. >90% NM
F18	634keV (97%)	1.7mm	Diag. PET
Y90	2.28MeV (100%)	9.2mm	Therapy
			-nlV
l123	127keV (14%)	0.3mm	e Diag. NM
In111	145keV (9%)+219keV (5%)	0.5mm	Diag. NM
I131	606keV(90%) + 330keV(9%)	1.6mm	Therapy (capsule)
Lu177	498keV (78%)	1.3mm	Therapy

Two Delacroix Models

Contamination area – has 'Zero' thickness (use for inadvertent 'pick-up' contamination)

Tc99m 1kBq/cm² 0.25 mSv.h⁻¹

<u>Droplet</u> 1cm², 0.5mm thick, 0.05ml volume
 (use for obvious droplet)

Tc99m 1kBq 0. 0088 mSv.h⁻¹

(disc) (1cm² cylinder) (Not to Scale!)

Droplet model has a big effect on the dose calculation

Delacroix vs VARSKIN - contamination

Contamination area – assumes 'Zero' thickness

	mSv / min fo		
	Delacroix	VARSKIN	Difference
Tc99m	4.1	3.6	-11%
F18	32	25	-21%
Y90	34	24	-21%

Delacroix vs VARSKIN - contamination

Contamination area – assumes 'Zero' thickness

	mSv / min for		
	Delacroix	VARSKIN	Difference
Tc99m	4.1	3.6	-12%
F18	32	25	-22%
Y90	34	24	-29%
l123	6.3	5.2 011	-17%
In111	6.3 Ref	erel 5.1	-19%
l131	Later L	22	-18%
Lu177	-	20	

Delacroix vs VARSKIN - Droplet

Droplet 1cm², 0.5mm thick, 0.05ml volume

N.B. my Units! mSv / min for 1 MBq

Also, are instantaneous dose rates

Delacroix vs VARSKIN - Droplet

Droplet 1cm², 0.5mm thick, 0.05ml volume

0.05ml Droplet (on surgical glove)

VARSKIN Droplet model Photograph of 0.05ml droplet on surgical glove

Droplet 0.05ml

model with six 0.5mm thick cylinders?

Dose is weighted sum of the individual cylinder doses

VARSKIN Droplet model

Model as 0.5mm slice + 0.5mm water layer?

BUT not representative!

- infinite plane (water) underneath
- No Backscatter layer on top

VARSKIN Droplet model Need a Rethink!

Still some backscatter errors, but now generally small

VARSKIN Droplet Model Comparison mSv / min / MBq

			Reduction		
			Factor		
Tc99m	0.52	0.17	Х3		
F18	12	5.1	X2.3		
Y90	17	10	x1.7		

VARSKIN Droplet Model Comparison mSv / min / MBq

			Difference
Tc99m	0.52	0.17	Х3
F18	12	5.1	X2.3
Y90	17	10	x1.7
l123	0.92	once 0.34	X2.7
In111	1.6 Refer	ence 0.34 0.61	X2.6
l131	For Lager	3.7	X2.5
Lu177	6.3	2.3	X2.8

Effect of Gloves

Sterile Surgical gloves (radiopharmacy)

Thickness 0.2mm

(VARSKIN table has 0.05mm)

Non-sterile Nitrile, latex free (dispensary, injections)

Thickness 0.05mm

(data not presented)

Still two Contamination situations

(1cm² disc)

Contamination – 'Zero' thickness

i.e inadvertent 'pick-up' contamination on glove

<u>Droplet</u>

use for obvious droplet contamination on glove

Dose reduction with Surgical gloves for Contamination Model mSv/min for 1MBq/cm²

	No glove	Surgical	Reduction
	(direct skin)	Glove	Factor
Tc99m	3.6	0.054	x67
F18	25	11.5	x2.2
Y90	24	16	x1.5

Dose reduction with Surgical gloves for Contamination Model mSv / min / MBq

	No glove	Surgical	Reduction
	(direct skin)	Glove	Factor
Tc99m	3.6	0.054	x67
F18	25	11.5	x2.2
Y90	24	16	x1.5
l123	5.2	0.16 01	X33
In111		erello 1.1	x4.7
l131	or Lazer	8.3	x2.7
Lu177	20	5	х4

Dose reduction with Surgical gloves for Droplet Model mSv/min/MBq

	No glove	Surgical	Reduction		
	(direct skin)	Glove	Factor		
Tc99m	0.17	0.03	x5.8		
F18	5.1	2.7	x1.9		
Y90	10	9	x1.1		

Dose reduction with Surgical gloves for Droplet Model mSv/min/MBq

	No glove	Surgical	Reduction
	(direct skin)	Glove	Factor
Tc99m	0.17	0.03	x5.8
F18	5.1	2.7	x1.9
Y90	10	9	x1.1
l123	0.34	0.09 00	x3.6
In111	0.61	ere 0.19	x3.1
l131	or Lager Rev	1.7	x2.2
Lu177	2.3	0.73	x3.1

Direct Skin contamination – Total Dose?

Inadvertent activity, fixed. Remnant has effective T1/2

Skin contamination Remnant Fractions and Biological Half-Life

Covens et al; long term spot checks; 560 measurements.

Unsuspected contamination of Tc99m (n = 33) and F18 (n = 7)

80% were localised spots on finger tips – mostly fixed

[From removing patient's butterfly or handling syringe shields without gloves]

Determined <u>effective half-life</u> of the activity on skin

[Pig skin experiments found 2% - 8% remnant fixed contamination]

Skin contamination Biological Half-Life

Derived Biological Half-life values

```
Tc99m 8.1 hr (6 – 11) mean and 95%ile range
```

F18 8.6 hr (4.5 - 12.7) mean and 95%ile range

VARSKIN gives the total dose based on the physical half-life

(the decay-corrected dose; use exposure time of ~20x T1/2)

Dose figures based on applying a 10hr biological half life (all radionuclides)

MBq Activity to give 500mSv

- 'Fixed' activity only
- biological T1/2 of 10hr

Very low activity values!

Ignores dose from initial higher activity causing fixed contamination

Demonstrates need to avoid direct skin contamination in nuclear medicine

Staff education is important

MBq Activity to give 500mSv

'Fixed' activity only

biological T1/2 of 10hr

Demonstrates need to avoid direct skin contamination in nuclear medicine

	MBq
	For 500mSv
Tc99m	0.43
F18	0.15
Y90	0.03
	CORLY
I123 Laten1Refer	enc 0.19
ately1Relo.	0.13
l131	0.028
Lu177	0.03

Summary and other factors

- Correct model is vital
- Distance and time from the basal layer is a key component of modelling
- Must avoid direct skin contamination in nuclear medicine
- Gloves essential in nuclear medicine can also reduce dose
- Staff Education critical