

Estimating Radiological Health Impacts from In Situ Recovery Operations using MILDOS

Bruce Biwer
Sunita Kamboj
David LePoire
Argonne National Laboratory

2021 Spring RAMP Users Group Virtual Meeting April 15, 2021

MILDOS 4.21

Computer code

- Based on U.S. Nuclear Regulatory Commission (NRC) regulations and guidance
- Origin dates back to 1979

Estimates radiological impacts from airborne emissions

- Uranium mining and milling facilities
- Uranium-238 and thorium-232 decay chains including radon
- Conventional uranium ore operations & in situ recovery facilities
- Human exposure from contaminated ground, air, and food

Licensing tool

- Applicants and licensees
- NRC staff

Primary Basis for MILDOS Models

NRC Regulatory Guides

- 3.51 Calculational Models for Estimating Radiation Doses to Man from Airborne Radioactive Materials Resulting from Uranium Milling Operations (1982)
- 3.59 Methods for Estimating Radioactive and Toxic Airborne Source Terms for Uranium Milling Operations (1987)

NRC Reports

- Compliance Determination Procedures for Environmental Radiation Protection
 Standards for Uranium Recovery Facilities 40 CFR Part 190 [NUREG-0859 (1982)]
- Standard Review Plan for In Situ Leach Uranium Extraction License Applications [NUREG-1569 (2003)]

NRC Interim Staff Guidance

 DUWP-ISG-001, Evaluations of Uranium Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance with 10 CFR 20.1301, Final Report (2019)

All MILDOS documentation available at mildos.evs.anl.gov

Program Scope

- Impact estimation from radioactive emissions from uranium milling facilities (traditional ore and in-situ recovery)
 - Dose commitments to individuals and regional population
 - Air, ground, and food concentrations
 - Different processes occur at different times in the facility's operational lifetime
 - For example: well drilling, operations, storage, restoration

Only radioactive emissions from airborne release

- Uses sector averaged plume model
- Includes deposition, resuspension, accumulation, weathering, decay & ingrowth
- No release to surface water or groundwater

Exposure pathways include

- External from groundshine and cloudshine
- Inhalation
- Ingestion of meat, milk, and vegetables

Exposure Pathways

In Situ Recovery

In Situ Recovery

New Well Field Development

Well Fields

Drying and Packaging of Yellowcake

Purge/Bleed and Land Application

Ion Exchange

New Well Field

- Particulates: No release
 - During drilling, a bentonite slurry flows out of the drill head and through the borehole
- Radon: released from the cuttings that are temporarily stored in the "mud" pits
 - average mass of cutting that are temporarily stored in the slurry pits
 - Number of mud pits generated per year
 - Average mass of cutting in a mud pit
 - Storage time of cuttings in mud pit

'Production' Well Field

- Particulates: No release
 - Closed loop from the production well through the ion exchange column to the injection well
- Radon: Released from the ore body into the process water
 - Radon circulates and builds up in the process water – released in 3 ways:
 - Purge: From process water that is purged
 - » Production well extracts more fluid than is pumped in through the injection well to maintain a cone of depression to prevent migration of mining solutions out of the ore in the production area
 - Resin Unloading: From the process water that is discharged during resin unloading from the ion exchange columns
 - Venting: From pipes and valves

'Restoration' Well Field

 Pump and treat with fresh water injection. Similar to production well.

Particulates: No release

 There is a closed loop from the well through to the injection well

Radon: Released from the ore body into the process water

- Radon circulates and builds up in the process water released in 2 ways:
 - Purge: From process water that is purged
 - » Well extracts more fluid than is pumped in through the injection well to maintain a cone of depression to prevent migration of mining solutions out of the ore in the production area
 - Venting: From pipes and valves

Drying and Packaging

Particulates:

- Stack release from thermal dryers
 - Use a fraction of the production based on information from facilities that are operational
 - Progeny releases are a fraction of the uranium releases
- No release from vacuum dryers under normal operating conditions

U-238 series only

Purified yellowcake (no Rn or Th-series)

Land Application Area

Release of particulates

- Surface soil is contaminated
 - Purge water from production wells and waste water from well field restoration are treated to unrestricted release levels and disposed of by irrigating the land

- Uniform contamination over a specified depth
- Equilibrium adsorption of nuclide between soil and the applied irrigation
- Release from the area source

Input Components

Receptor

- Location
- Indoor/outdoor occupancy
- Local food consumption

Meteorology

- Direction, speed, stability
- Frequency
- Deposition

Source release

- Types
- Radon / Particulates Releases
- Particulate characterization
- Source time dependence

Land

- Food yield
- Weathering
- Resuspension

Customizable Table and Graph Output Options

Impacts

- Normalized Air Conc. (χ/Q)
- Media Concentrations
- Doses
- Receptors
- Sources
- Radionuclide
 - U-238 / Th-232 decay chains
- Particle Size
 - Gas, 1.5, 3, 7.7, or 54 μm
- Time Step

Media

Air / ground / 7 food stuffs

Organ

Effective, bone, lung, liver, kidney

Pathway

- Inhalation and ingestion (plant, meat, milk)
- Ground or cloud shine

Format

 Single table or graph; Series (e.g., dose for each time step); or Set (e.g., conc. for each nuclide by media type)

In Situ Recovery Example Demo

Follows well field development, production, and restoration

- For a given well field
 - New well field source area source
 - Well field source (production vent) area source
 - Well field source (production purge) point source
 - Well field source (restoration vent) area source
 - Well field source (restoration purge) point source
 - Area sources are given the same location by the user
 - Point sources can be in a different location

More Information

Web sites

mildos.evs.anl.gov ramp.nrc-gateway.gov

Contacts

Bruce Biwer bbiwer@anl.gov

Dave LePoire dlepoire@anl.gov

Sunita Kamboj skamboj@anl.gov

Casper Sun – NRC project manager (301) 415-1646 casper.sun@nrc.gov

For technical support, send questions or comments to mildos@anl.gov

