GENII Version 2 General Purpose Environmental Radiation Software

Jeremy Rishel, PNNL Bruce Napier, PNNL

GENII Overview

- A set of computer programs for estimation of radionuclide concentrations in the environment and dose/risk to humans from:
 - Acute or chronic exposures from
 - Radiological releases to the atmosphere, surface water, or
 - Initial contamination conditions
- One of a set of quality-assured and configurationcontrolled safety analysis codes managed and maintained for DOE's Safety Software Central Registry

GENII Development History

- 1988 Version 1. Released
 - ICRP-26/30/48 dosimetry
- 1990 Version 1.485 stabilized
- 1992 GENII-S stochastic version
- 2004 GENII Version 2
 - ICRP-72 age-dependent dosimetry
 - EPA HEAST slope factors
 - Federal Guidance Report 13 risk factors
- ▶ 2006/7 V&V
- ▶ 2008 New features, DOE toolbox status

Available Models in GENII

- Atmospheric transport
- Surface water transport
- Waste/soil redistribution
- Terrestrial uptake
- Human Exposure
- Dose/Risk
- Uncertainty/Sensitivity

Types of Scenarios

- Far-Field scenarios
 - Atmospheric transport (acute or chronic)
 - Surface water transport (acute or chronic)
- Near-Field scenarios
 - Spills
 - Buried waste
 - Groundwater use groundwater transport modeling is NOT an explicit part of GENII

GENII V.2 Time Line

Radionuclides of Interest

- All those with half-lives greater than 10 minutes, except radon progeny
- And all decay progeny
 - Some are included "implicitly" with the parent radionuclide

GENII V.2 Atmospheric Transport Options

- Chronic
 - Gaussian Plume
 - Lagrangian Puff
- Acute
 - Gaussian Plume
 - Lagrangian Puff
- ► Estimation of 95th percentile dispersion conditions
- Input of pre-calculated dispersion parameters

GENII V.2 Chronic Plume Model

- Straight-line, sector-averaged Gaussian plume model
 - Uses hourly observations or joint-frequency data
 - Multiple, independent sources
 - Ground level or elevated releases
 - Point or area sources
 - Finite flow correction
 - Sectors by 16 compass points or 10 degrees
 - Radial output grid

GENII V.2 Chronic Puff Model

- Lagrangian puff releases based on a single meteorological station
 - Hourly time step (variable number of puffs/hour) using hourly observations or quasi-hourly built from joint-frequency data
 - Cartesian (rectangular) grid
 - Multiple sources
 - Point or area sources
 - Ground level or elevated releases

GENII V.2 Acute Plume Model

- Straight-line centerline Gaussian for individuals
 - For short (~2 hour releases)
 - Single source
 - Ground-level or elevated releases
- Radial grid
 - Radial sectors by 16 compass points or 10 degrees
- A specialized module for 95th percentile conditions is now available (currently NOT the NRC RG 1.145 approach for sector and site, but could be revised)

GENII V.2 Acute Puff Model

- Lagrangian puff based on a single meteorological station
 - Hourly time step using hourly observations or quasi-hourly inputs derived from joint-frequency data
 - Single source
 - Cartesian (rectangular) grid
 - Ground-level or elevated releases

Parameterizations for Diffusion Coefficients

- Briggs open country
- Briggs urban conditions
- Pasquill-Gifford (ISC-3)
- Pasquill-Gifford (NRC: PAVAN, MESORAD, XOQDOQ)
- Turbulence Statistics (NRC: RASCAL)

Parameterizations Available in All Dispersion Models

- Building wake/low-speed meander correction to diffusion
- Buoyancy-induced diffusion
- Plume rise/downwash corrections
 - Momentum
 - Buoyancy
- Diabatic wind profile

GENII V.2 Atmospheric Deposition

- All models have plume depletion/mass balance
- Dry deposition
 - "Resistance model"
 - Includes gravitational settling of larger particles
- Wet deposition
 - Washout dependent on precipitation rate
 - Rain and snow considered

Sources of Meteorological Data for Atmospheric Models

- Hourly data
 - CD-144 format (National Climatic Data Center NCDC)
 - SAMSON format (NCDC)
 - Precipitation in TD-3240 format (NCDC)
- Joint frequency data
 - STAR (ISC-3) [provided for many US sites]
 - GENII V.1.485

GENII V.2 Air Submersion Dose Rates

- Infinite plume
 - Based on Federal Guidance Report FGR-13 models
- Finite plume
 - Close to release array of line sources
 - Intermediate distances stacked series of infinite planes
 - Long distances defaults to infinite plume

GENII V.2 Surface Water Transport Models

- Simple models derived from NRC's LADTAP
 - Rivers: analog to atmospheric Gaussian plume
 - Constant depth, width, velocity
 - Straight channel
 - Continuous discharge
 - River dilution volume (well mixed)
 - Acute river (time integral)
 - Lake
 - quasi-steady state wind-driven currents

GENII V.2 Near-Field Soil Model

GENII V.2 Near-Field Biotic Transport

- Plant roots root fraction applied to concentration ratio (CR)
- Burrowing animals volume of soil moved versus depth
- Applied to arid, humid, or agricultural conditions

GENII V.2 Near-Field Human Intrusion

- Buried waste and/or deep soil may be manually redistributed at the start of exposure to the surface soil.
- Process is a step function manual redistribution factor (m³/m²).

GENII V.2 Exposure Pathways

- External
 - Transported air
 - Soil
 - Swimming
 - Shoreline
- Inhalation
 - Transported air
 - Resuspended soil
 - Volatilized indoor air pollutants from water

GENII V.2 Exposure Pathways, Continued

Ingestion

- Leafy vegetables
- Other vegetables
- Fruit
- Grain
- Meat
- Milk
- Poultry
- Eggs

- Fish
- Crustaceans
- Molluscs
- Water plants
- Drinking water
- Shower water
- Swimming water
- Soil

GENII V.2 Crop Contamination

- ▶ Plant = Soil * CR + intercepted deposition
 - Concentration ratios (CR) are traceable to current U.S. and international literature (PNNL-21950).
 - Interception function of crop biomass
 - Wet interception
 - Dry interception

GENII V.2 Animal Product Contamination

- ► Animal Product = TF Σ (Crop * Ingestion rate)
 - Transfer factors (TF) are traceable to current U.S. and international literature (PNNL-21950).

GENII V.2 Aquatic Biota Contamination

- Fish = Water concentration * BF
 - Bioaccumulation factors (BF) are traceable to current U.S. and international literature (PNNL-21950).

GENII V.2 Tritium Specific Activity Model

- Environmental media assumed to have same specific activity (Bq/kg water) as contaminating medium (water or air)
- Fractional content of both water and non-water portions of the food product is used
- In acute cases, rapid equilibration/de-equilibration is assumed (~8 hours)
- Based on observations at Chalk River

GENII V.2 Carbon-14 Specific Activity Model

- For atmospheric sources, model is parallel to that for tritium
- For water sources, equilibration is assumed with soil carbon atom ratios
- For acute cases, uptake via photosynthesis is slow, long de-equilibration

GENII V.2 Human Exposure

▶ Up to 6 age groups allowed, following ICRP-56,67,69

3 months	0-1 year
1 year	1-2 year
5 year	2-7 year
10 year	8-12 year
15 year	13-17 year
20 + year	17-110 year

GENII V.2 Acute-Deposition Food Pathways

- ► GENII V.2 presents results for 4 seasons (winter/spring/summer/autumn)
- This is a surrogate for a complex set of underlying assumptions about plant growth, weathering, uptake, and time-to-harvest
- Selection of season depends on meteorological input (this is related to the uncertainty capability)
- Season definitions are a user input, because seasons below the equator are reversed!

External Exposure - Doses

- Dose rate conversion factors from Federal Guidance Report FGR-12, provided by Keith Eckerman, ORNL
 - Air Submersion
 - Water Immersion
 - Soil Plane
 - Soil Volume

Internal Exposure - Doses

- Effective dose equivalent: ICRP-30
 - Adult only
- Effective dose: ICRP-72
 - 6 age groups
 - 24 organs/tissues
 - Inhalation classes Fast (F), Medium (M), Slow (S)

Risk Calculations – Dose-to-Risk Conversions

- ICRP provides estimates of cancer incidence and mortality in relation to effective dose
 - ICRP-30 effective dose
 - ICRP-72 organ dose
- The BEIR VII report supports these values with minor revision
 - Risk = Dose (Sv) * Conversion (risk/Sv)

Risk Calculations – FGR-13

- US Federal Guidance Report 13 provides coefficients for 15 cancer sites
 - Inhalation (risk/Bq)
 - Inhalation classes F, M, S
 - Ingestion (risk/Bq)
 - Accounts for different consumption patterns with age
 - Drinking water
 - Food crops

GENII V.2 Uncertainty Analysis

- Parameter uncertainty and sensitivity may be addressed using the SUM³ processor in FRAMES.
- All non-control parameters are allowed to be varied, using description files to define 'available' parameters
- Acute atmospheric releases are in important subset. For these, SUM³ is used to vary start times in the plume or puff models, allowing construction of the location or site cumulative dose/risk distribution function.

Questions?

- Bruce Napier
 - bruce.napier@pnnl.gov
 - **509-375-3896**
- Jeremy Rishel
 - jeremy.rishel@pnnl.gov
 - **509-375-6974**

