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REGULATORY BASIS FOR EYEDOSE

 In the United States from 10 CFR 20.1201 (1991):
 150 mSv/yr

 Internationally from ICRP 118:
 20 mSv/yr averaged over 5 consecutive years, not to exceed 50 mSv in any single year

 Many nations adopted the new ICRP recommendations, causing a renewed interest in eye 
dosimetry
 Some VARSKIN (NRC approved code) users wanted to use code to estimate eye dose
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SENSITIVITY BY STRUCTURE

 In order of decreasing sensitivity (Rohrschneider, 1929)

 Lens

 Conjunctiva

 Cornea

 Uvea

 Retina

 Optic Nerve

 Assumption:  Protect the lens and protect the eye
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PRIOR TO EYEDOSE
 We compared VARSKIN 5.3 to Monte Carlo simulation 

(MCNP6)

 Using a simplified eye model with cornea, lens, and 
surrounding tissue all assumed to be of unit density

 to be closest to VARSKIN assumptions

 Point sources located along centerline from contact to 
20 cm

 Dose estimated per incident electron

 to normalize for geometry

 cross-sectional area of 1 cm2 with 20 mm thickness, 
centered at a depth of 3 mm
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Surrounding 
tissue

Lens

Cornea
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SOURCE ON CONTACT
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*VARSKIN underestimates by at least 10%
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WITH AIR GAP
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1 CM GAP WITH PLASTIC
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*
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2 CM GAP WITH PLASTIC
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*
2cm
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MONTE CARLO METHODS

 “Random walk” physics simulator
 Average behavior of the typical particle

 Gold standard in particle transport
 MCNP6, EGS, GEANT, etc.

 Pros
 Customizable geometries

 Multiple particle transport

 Multiple energy

 Cons
 Time intensive

 Steep learning curve

 Output files difficult to interpret
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EYEDOSE MODEL 
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 A set of deterministic equations were developed from a vast array of probabilistic simulations to estimate radiation dose to 
the lens of the eye

 The equations used in EyeDose were developed through Monte Carlo simulations of monoenergetic radioactive sources 
placed at varying distances from a stylized eye model

 Account for particle type, energy, source emission rate, and protective eyewear and are valid for:  
 electron energies ranging from 100 keV to 11 MeV

 photon energies ranging from 7 keV to 11 MeV

 distances from 0 to 20 meters.  

 Additionally, sources emitting particles over an energy spectrum, such as beta sources, are incorporated into this new 
dosimetry model using both ICRP 38 and 107 data

 The source is assumed to be an infinitely small, isotropic point source located on the geometric axis of the eye 

 The target volume is taken to be the entire lens
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EYE GEOMETRY

 The source in EyeDose is modeled as an 
infinitely small, monoenergetic, isotropic 
point source of energy E

 The source is located on the geometric axis 
of the eye and the distance between the 
surface of the eyeball and the source is 
labeled r

 The target volume is taken to be the entire 
lens
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PHOTON DOSIMETRY

 The development of the photon model begins with the uncollided fluence equation:

 Fundamental equation for absorbed dose to a point in space at some distance r from an isotropic source of 
photons:
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𝐷𝐷0 𝑟𝑟,𝐸𝐸 = 𝐸𝐸 Φ0 𝜇𝜇𝑒𝑒𝑒𝑒
𝜌𝜌 𝐵𝐵 𝑒𝑒−𝜇𝜇𝜇𝜇

Φ0 𝑟𝑟 =
𝑆𝑆0

4𝜋𝜋𝑟𝑟2
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PHOTON DOSIMETRY

 The lens, however, is a complex volume and not a single point

 The probabilistic modeling software MCNP6 was used to determine dose to the human lens over a range of photon 
energies after passing through, and scattering in, air and the cornea

 The resulting function for determining lens dose from photons of energy E emanating from an isotropic source at 
distance r, is

 The parameters t, u, and v describe the overall shape of the curve and μ is the mass attenuation coefficient in air
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𝐷𝐷p 𝑟𝑟,𝐸𝐸 =
exp −𝜇𝜇𝑟𝑟

𝑡𝑡𝑟𝑟2 + 𝑢𝑢𝑟𝑟 + 𝑣𝑣
𝜇𝜇
𝜌𝜌 air

=
𝛼𝛼0 + ∑𝑖𝑖=16 𝛼𝛼𝑖𝑖 ln𝑖𝑖 𝐸𝐸
1 + ∑𝑖𝑖=16 𝛽𝛽𝑖𝑖 ln𝑖𝑖 𝐸𝐸

,
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PHOTON DOSIMETRY
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𝑡𝑡 = exp
𝛼𝛼0 + ∑𝑖𝑖=15 𝛼𝛼𝑖𝑖 ln𝑖𝑖 𝐸𝐸
1 + ∑𝑖𝑖=18 𝛽𝛽𝑖𝑖 ln𝑖𝑖 𝐸𝐸

𝑢𝑢 = exp
𝛼𝛼0 + ∑𝑖𝑖=19 𝛼𝛼𝑖𝑖 ln𝑖𝑖 𝐸𝐸
1 + ∑𝑖𝑖=17 𝛽𝛽𝑖𝑖 ln𝑖𝑖 𝐸𝐸

𝑣𝑣 = exp
𝛼𝛼0 + ∑𝑖𝑖=19 𝛼𝛼𝑖𝑖 ln𝑖𝑖 𝐸𝐸
1 + ∑𝑖𝑖=16 𝛽𝛽𝑖𝑖 ln𝑖𝑖 𝐸𝐸
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PHOTON DOSIMETRY
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PROTECTIVE GLASSES

 The shielding used in the model is based on 
Spackman’s “classic” style eyewear

 Adding the lens thickness of 2 mm places its 
anterior face 1.25 cm from the cornea’s 
surface
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1.25 cm
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PROTECTIVE GLASSES
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PROTECTIVE GLASSES

 The concept of the buildup factor is extremely useful when estimating the dose after shielding has been introduced, 

 Since the buildup factor is the ratio of total fluence to the primary fluence, total fluence can be expressed 
mathematically as:

 where Φ(r) is the total fluence at point r, Φ0 (r) is the primary fluence at r, and the buildup factor is B(r)

 Combining this concept with the equation for dose written as D=ΦE(μab/ρ), shows that the dose rate at a given point 
is related to the fluence at that point, and so one may write:
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𝛷𝛷 r = 𝐵𝐵 r Φ0 r

𝐷𝐷sh 𝑟𝑟,𝐸𝐸 = 𝑓𝑓 𝐷𝐷unsh 𝑥𝑥,𝐸𝐸 .
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ELECTRON DOSIMETRY

 Understanding the electron model in both shielded and unshielded circumstances first requires the analysis of 
the unshielded electron model in a vacuum

 Because the bremsstrahlung plays a significant role in electron dosimetry, it must be considered
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ELECTRON DOSIMETRY

 This new path opens at around r = 0.3 cm.  The electron rays radiating from the source can be considered 
parallel at about 10 cm, at which point both the bremsstrahlung and direct contribution obey the inverse 
square law.
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ELECTRON DOSIMETRY
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ELECTRON DOSIMETRY

 An empirical model that fits the MCNP probabilistic data for dose due to electron source, bremsstrahlung, and 
scattered contributions is

 The parameters a, b, c, d, t, u, and v are all energy dependent shaping parameters and the functions B+ and B- are 
modified hyperbolic tangent functions
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𝐷𝐷e,vac 𝑟𝑟,𝐸𝐸 =
ℬ− 𝑞𝑞, 𝑠𝑠

𝑎𝑎𝑟𝑟2 + 𝑏𝑏𝑟𝑟 + 𝑐𝑐 𝑟𝑟 + 𝑑𝑑
+

ℬ+ 𝑞𝑞, 𝑠𝑠
𝑡𝑡𝑟𝑟2 + 𝑢𝑢𝑟𝑟 + 𝑣𝑣 .
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ELECTRON DOSIMETRY

 Additional parameters are needed to account for energy degradation in air

where μe(r,E) is a function that accurately describes the impact that air has on electron dosimetry.  

 Generally, one could write Dair=Dvac exp(-hr), where h behaves similarly to μ for photons.  This formulation fails for 
purposes of this analysis, though, for three reasons.

 The analysis concerns distances in air up to 10 m

 The size and shape of the target volume play a significant role in electron dosimetry

 Bremsstrahlung generated in air is a key component of electron dose
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𝐷𝐷air = 𝑓𝑓 𝐷𝐷vac, 𝜇𝜇e 𝑟𝑟,𝐸𝐸 ,
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ELECTRON DOSIMETRY

 While traversing through space, the 
electron fluence undergoes 
dramatic transformations that are 
not adequately described by simple 
exponential decay

 An empirical expression accounting 
for the effects of air was derived:
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𝐷𝐷air =
ℬ− 𝑞𝑞, 𝑠𝑠

𝑎𝑎𝑟𝑟2 + 𝑏𝑏𝑟𝑟 + 𝑐𝑐 𝑟𝑟 + 𝑑𝑑
+
ℬ+ 𝑞𝑞, 𝑠𝑠 ℬ− 𝑚𝑚, 𝑛𝑛
𝑡𝑡𝑟𝑟2 + 𝑢𝑢𝑟𝑟 + 𝑣𝑣 +

𝑘𝑘 ℬ+ 1000, 𝑧𝑧
1 + 𝑟𝑟 𝑗𝑗
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PROTECTIVE GLASSES

 Incorporating shielding for electrons requires a slight modification of 
the unshielded 𝐷𝐷air equation and recalculation of each of the shaping 
parameters

 Similarly, the shielded electron dose model is:
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𝐷𝐷sh =
ℬ− 𝑞𝑞, 𝑠𝑠

𝑎𝑎𝑟𝑟2 + 𝑏𝑏𝑟𝑟 + 𝑐𝑐 𝑟𝑟 + 𝑑𝑑
+
ℬ+ 𝑞𝑞, 𝑠𝑠 ℬ− 𝑚𝑚, 𝑛𝑛
𝑡𝑡𝑟𝑟2 + 𝑢𝑢𝑟𝑟 + 𝑣𝑣 +

𝑘𝑘 ℬ+ 1000, 𝑧𝑧
1 + 𝑟𝑟 𝑗𝑗 ℬ− 𝑦𝑦, 0 .



var

TOTAL DOSE
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 In the presence of discrete energy particles (such as Auger electrons, characteristic x-rays or gamma rays) and 
continuous energy spectra (such as beta radiation or x-ray machines), total dose is given by:

�̇�𝐷total = �𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝜇𝜇𝑒𝑒𝑑𝑑𝑒𝑒
𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑

𝐴𝐴𝑖𝑖𝐷𝐷p 𝐸𝐸

+�𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑

𝐴𝐴𝑖𝑖 �
𝐸𝐸
𝐷𝐷p 𝐸𝐸 � 𝑃𝑃𝑖𝑖 𝐸𝐸 𝑑𝑑𝐸𝐸

+�
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝜇𝜇𝑒𝑒𝑑𝑑𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝜇𝜇𝑝𝑝𝑒𝑒𝑑𝑑

𝐴𝐴𝑖𝑖𝐷𝐷e 𝐸𝐸

+�
𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑑𝑑
𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝜇𝜇𝑝𝑝𝑒𝑒𝑑𝑑

𝐴𝐴𝑖𝑖 �
𝐸𝐸
𝐷𝐷e 𝐸𝐸 � 𝑃𝑃𝑖𝑖 𝐸𝐸 𝑑𝑑𝐸𝐸 .
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VERIFICATION AND VALIDATION
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VERIFICATION AND VALIDATION
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COMPARISON TO VARSKIN
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COMPARISON TO VARSKIN

11/10/2021RENAISSANCE CODE DEVELOPMENT, LLC 32



var

CURRENT LIMITATIONS

 Cannot adjust eye glasses parameters – built directly into 
the model

 Assumes eyeball being irradiated is staring directly at the 
source for the entire exposure

 Sensitivity study shows dependency on off-axis angle and energy

 The difference between the on-axis and off-axis dose might be within 
20 percent provided that θ < 20°
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OFF-AXIS SOURCE
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QUESTIONS
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