

GENII Uncertainty Modeling

BRUCE NAPIER

RAMP GENII Training, Taipei, Taiwan

Uncertainty Analyses

- **Benefits**
- **▶** Specifying the problem
- Conceptual/computational models
- Parameter uncertainty analysis
- Sensitivity analysis

What is Uncertainty Analysis?

- An assessment of the probability of obtaining a specific output from a mathematical model, e.g.:
 - **■Will the result exceed a specified limit?**
 - How much variation is there in the results of this model?

Deterministic Models

Proudly Operated by Battelle Since 1965

Model,
$$D = F(x,y,z)$$

Proudly Operated by Battelle Since 1965

Model, D = F(x,y,z)

Predicted values

There is more than one type of uncertaint laboratory

- That caused by natural variability
 - (Type A)
 - **■**(Aleatory)
- That caused by lack of knowledge of true values
 - **■**(Type B)
 - **■**(Epistemic)

Why is uncertainty analysis necessary?

- Accuracy is becoming more important as regulatory limits are lowered -"Conservative" analyses are not longer sufficient
- ► Site-specific data are generally limited
- Arguments on definition of parameters are avoided

Assessing Uncertainty

- Specify the problem (determine the assessment question)
- Develop the conceptual model
- Develop the computational model
- **▶** Estimate parameter values
- Calculate results

Define the Assessment Question

- Focus the uncertainty analysis on the assessment endpoint
- Results differ depending on the assessment scenario and its endpoint
- Stochastic variability may be a source of uncertainty, or it may be the assessment objective!

Parameter Uncertainty Analysis

- 1. List all parameters
- 2. Specify the maximum conceivable range
- 3. Specify the degree of belief that the appropriate parameter value is not larger than the values determined above
- 4. Select a probability distribution that best fits the degrees of belief

Parameter Uncertainty Analysis

- 5. Account for dependencies Introduce restrictions Specify degree of association
- 6. Propagate parameter distributions through the computational model
- 7. Rank parameters with respect to their contribution to uncertainty (sensitivity)
- 8. Present and interpret results

Input Distributions

In any model, an accurate representation of the output requires an accurate representation of the input. Therefore, good answers to questions concerning the output require accurate representations of the input distributions.

Obtaining Uncertainty Distributions

- Check textbook values
- **▶** Check literature
- **►** Use experts

Risk Assessment is not Risk Management

► When it comes to uncertainty, honesty is more important than accuracy

Uncertainty Methods

- Adjoint techniques
- Stochastic methods
- Perturbation theory
- Response surfaces
- Differential analysis
- **► Monte Carlo Methods**

Monte Carlo

- Simple Random Sampling
- A numerical method in which multiple vectors (realizations) of input parameters are randomly selected. The resulting output vector numerically represents the distribution of the answer.

Monte Carlo

- ► Can directly compute confidence limits on estimates of mean, variance, fractiles, etc.
- ► Can easily aggregate independent samples of different size to sequentially arrive at a sufficiently large sample

Latin Hypercube

- A randomized fractional factorial sampling scheme, which places restrictions on the selection of input vectors
 - More efficient than simple random sampling
 - Less variability between sets of samples
 - Not as well developed theoretically as simple random sampling

Dependence on Expert Judgement

- Expert judgement is required:
 - to formulate models
 - to define input distributions
- ► Therefore the answer could be somewhat different if different experts were used
- ► There is an evolving science of expert elicitation for this type of work

GENII: Uncertainty Analysis

Proudly Operated by Battelle Since 1965

Performed using the FRAMES SUM³ Module

GENII: Evaluating Uncertain Results

Proudly Operated by Battelle Since 1965

