

COMPUTER CODES IN RAMP

Radiation Protection Branch
Office of Nuclear Regulatory Research
The United States Nuclear Regulatory Commission

HABIT TEAM*

- Kevin Lam (System Engineer)
- Richard McMullan (Fortran)
- Raymond Aurdos (Graphic)
- Dan Pomykala (PM)
- Wendy Chinchilla (Admin)
- Dr. Tom Spicer (Expert)
- Dr. Casper Sun (COR)
- Dr. Syed Haider (NRC PM)

^{*} Poonam Sachdeva (PM) and Tsega Gebissa (SE)

COMPUTER CODE FOR ASSESSING CONTROL ROOM HABITABILITY

Prepared for 2015 RAMP first annual meeting, Rockville, MD 20852: October 5th, 2015

Real ATD Pictures

Habitable Issues

Non-radiological

Radiologica

Conservation Equation

$$\frac{\partial \Phi}{\partial t} + \mathbf{\nabla} \cdot (\mathbf{F} + \Phi \mathbf{V}) - H = 0$$

$$C(x, y, z, t) = \frac{Q}{2\pi u \cdot \sigma_y \cdot \sigma_z} \cdot \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \left[\exp\left(-\frac{(z - H_{eff})^2}{2\sigma_z^2}\right)\right] + \exp\left(-\frac{(z + H_{eff})^2}{2\sigma_z^2}\right)$$

HABIT Code Development

- Phase I (June 2014 Feb. 2015):
 - Repaired HABIT v1.1 FORTRAN source code
 - Developed User Manual and added interactive help screens
 - Complying Section 508 requirements
- Phase II (April 2015 Sept. 2016):
 - Integrated DEGADIS and SLAB (D&S) dense gas models
 - New GUI and completed HABIT v2.0 code
 - V&V and built test cases examples
- Phase III (Oct 2016 Present):
 - Release HABIT v2.1 and update the User Manual
 - Renew NUREG/CR-6210 and RG 1.78
 - ATD benchmark (on the horizon)

RG 1.78: Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release (2001)

U.S.NRC PHASE-I (8 Months)

Protecting People and the Environment

HABIT v1.1 & v1.2

Verification and Validation

Have we built the right software?

Validate FORTRAN modules and I/O data

- Impacts from identified
 "BUGS" and modifications
 made in HABIT 1.2
- Precision of reproduced identical results

Add Microsoft compiling methods and new "User Manual"

2017 RAMP | Taiwan

What's New in HABIT

- Used Intel Visual FORTRAN compiler for compatibility with Windows 7 (64-bit)
 - Added User Manual and interactive tooltips
 - Backwards compatible for old I/O designed (.DSG) files
- Used Microsoft .NET technology for graphical user interface (GUI) development
 - Section 508 Compliance (e.g., color blinder or muted use of color, and JAWS)
 - Data plot and save in XML and ASCII

2017 RAMP | Taiwan

HABIT New Tooltips

Tooltips provide a convenient way to see the expected range for fields and provide validations to prevent entering bad data.

PHASE-II

April 2015 - Sept 2016

- Integrate HABIT-DEGADIS-SLAB codes
- Program BMW criteria and test cases for dense-gas model importance

ANL: ATD Code Comparison and Selected Models

Model	Developer	Purpose	Scenarios	Туре
ALOHA 5.4.3	EPA/NOAA	Dense gas and neutrally buoyant gas dispersions	Leak from pipeline or tank, evaporating puddle, direct open source	Source-term model
DEGADIS 2.1	University of Arkansas	Dense gas and neutrally buoyant gas dispersions	Elevated or ground-level area source, vertical jet leak	Non-source- term model
HABIT 1.1	PNNL	Neutrally buoyant gas dispersions	Liquid or gas tank burst and leak	Source-term model
SCIPUFF 2.2	Titan Research and Technology	Dense gas and neutrally buoyant gas dispersions	Moving and stack sources, gaseous and particulate materials	Non-source- term model
SLAB	LLNL	Dense gas and neutrally buoyant gas dispersions	Open evaporating pool, horizontal and vertical jet/stack, instantaneous volume liqiud sources	Non-source- term model

Source: Table E.1: ANL/EVS/TM-13.3 (April 2013)

ATD Experimental Data (Hanna et al.1991)

Parameter	Burro	Coyote	Desert Tortoise	Goldfish	Hanford (continuous)	Hanford (Instantaneous)	Maplin Sands	Prairie Grass	Thorney Island (continuous)	Thorney Is. (instantaneous)
Number of trials	8	3	4	3	5	6	4, 8ª	44	2	9
Location	China Lake, Calif.	China Lake, Calif.	Nevada Test Site, Nev.	Nevada Test Site, Nev.	Richland, Wash.	Richland, Wash.	Maplin Sands, U.K.	Near O'Neill, Neb.	Thorney Island, U.K.	Thorney Island, U.K.
Period	JunSep. 1980	SepOct. 1981	AugSep. 1983	Aug. 1986	SepNov. 1967	SepNov. 1967	Sep. 1980, Sep Oct. 1980	JulAug. 1956	Jun. 1984	Aug. 1982-Jun. 1983
Material	LNG	LNG	NH ₃	HF	Krypton-85	Krypton-85	LNG, LPG	SO ₂	Freon-12, N ₂	Freon-12, N ₂
Type of release	Boiling liquid (dense gas)	Boiling liquid (dense gas)	2-phase jet (dense gas)	2-phase jet (dense gas)	Gas (non- buoyant)	Gas (non- buoyant)	Boiling liquid (dense gas)	Gas jet (non- buoyant)	Gas (dense gas)	Gas (dense gas)
Total mass (kg)	10,700- 17,300	6,500-12,700	10,000 - 36,800	3,500- 3,800	11-24 ^b	10 ^b	2,000-6,600, 1,500-8,400	23-63	4,800	3,150-8,700
Release duration (s)	79-190	65-98	126-381	125-360	598-1,191	(instantaneous)	100-230, 90-360	600	460	(instantaneous)
Surface	Water	Water	Soil	Soil	Soil	Soil	Water	Soil	Soil	Soil
Surface roughness (m)	0.0002	0.0002	0.003	0.003	0.03	0.03	0.0003	0.006	0.01	0.005-0.018
P-G stability class	C-E	C-D	D-E	D	C-F	C-F	D, C-D	A-F	E-F	D-F
Max. distance (m)	140-800	300-400	800	1,000- 3,000	800	800	180-650, 250- 650	800	472	410-580
Min. averaging time (s)	1	1	1	66.6-88.3	38.4	4.8	3	(dosage)	30	0.6
Max. averaging time (s)	40-140	50-90	80-300	66.6-88.3	269-845	4.8	3	600	30	0.6

The first and second values denote LNG and LPG, respectively, if any.

b Curies, rather than kg, are used as a measure of the amount of this radioactive tracer released.

"Predicted (V)" and "Observed (H)" Concentrations (ppm)

Modules Selected

- DEGADIS (Thomas Spicer) solves the gas concentrations by gravity-driven, over flat terrain, then into the entrainment layers.
- SLAB (Donald Ermak) solves gas concentrations by mass, energy, and momentum balances at downwind locations.

Both Models can perform for release from: pool evaporation, jets, and explosion scenarios.

Model Evaluations:

Is an equitable comparison possible?

- Models have varying starting points (e.g. some have full source emissions algorithms and others require input of source emission rate),
- Models have varying ending points (i.e., the output files are not consistent with each other),
- Most models have been 'calibrated' with some of the field data sets,
- Models are not applicable to all source scenarios (i.e., some models claim to be applicable to a wider range of scenarios than justified by their scientific modules), and
- Model developers some state that it is necessary to consult with them during any applications of their model.

BMW Criteria

Britter and McQuaid found that denser-than-air effects are important if:

$$\frac{g(dm/\rho_s)}{D_s u_r^3} \left(\frac{\rho_s - \rho_a}{\rho_a}\right) > 0.15^3 = 0.0034$$

For puffs or instantaneous gas releases, denser-than-air effects are important if:

$$\frac{g(m/\rho_s)^{1/3}}{u_r^2} \left(\frac{\rho_s - \rho_a}{\rho_a}\right) > 0.2^2 = 0.04$$

Where g is the acceleration due to gravity and ρ_a is the ambient air density.

Flowchart

CHEM(ical) Module

Protecting People and the Environment

Radiological Modules

Protecting People and the Environment

SLAB (GUI)

DEDAGIS: GUI

Protecting People and the Environment

DEGADIS' 4 Modules

- Simulation Processes
- Atmospheric Processes
- Chemical Specifications

Wind direction

Release Specifications

I/O Input Fields

E	F	G	Н	1	J	K	L
	Liquid Tank Leak- DEGADIS	Gas Tank Burst- DEGADIS	Gas Tank Leak- DEGADIS	Liquid Tank Burst- SLAB	Liquid Tank Leak- SLAB	Gas Tank Burst-SLAB	Gas Tank Leak- SLAB
u0 (m/s) = U _a	u0 n/s) = 1	υΩ (m/s) = T _a	u0 (m/c) = 11	UA (m/s) = 11 _a Z/ = 10 m	UA (m/s) = U _a	UA (m/s) = U _a	UA (m/s) = U _a
20 (m) = 10 m	z0 n) = 1(m	20 n) 10 n		Z = 10 m	ZA = 10 m	ZA = 10 m	ZA = 10 m
stab (A=1,B=2, etc.) (A-F)so class G would be best approximated with class F.	istab (A=1,B=2, etc.) (A- F)so class G would be best approximated with	istab (A=1,B=2, etc.) (A-F)so class (would be best approximated with class F.	istab (A=1,B=2, e) (A-F)so class G would be best approximated with class F.	STAB (A=1,B=2, etc.)(A- F)class G would be best approximated with class	STAB (A=1,B=2, etc.)(A-F)class G would be best approximated with class F.	And the second s	STAB (A=1,B=2, etc.)(A-F)class G would be best
tamb (K) = T _a + 273.1	ta b K) / + 25		gical co	TANTE A.1		TA (K) = T _a + 273.15	TA (K) = T _a + 273.15
pamb (atm) = P _a /760	pa b m P 769	(a P ₂ 760	(p) = (qt) - (qt)	AC U E	0 15 0	NOT USED	NOT USED
R _s (W/m ²)	$R_s (W/m^2)$	$R_s (W/m^2)$	$R_s (W/m^2)$	$R_s (W/m^2)$	$R_s (W/m^2)$	R _s (W/m ²)	R _s (W/m ²)
cc (tenths)	cc (tenths) T _g (°C)	cc (tenths) T _g (°C)	cc (tenths) T _g (°C)	cc (tenths) T _g (°C)	cc (tenths) T _g (°C)	cc (tenths) T _g (°C)	cc (tenths) T _g (°C)
z _R (m)	z _R a)		ZR COLORG	ZO (m)	ZO (m)	ZO (m)	ZO (m)
relhum (%)	re um (6)		meters	RH (%)	RH (%)	RH (%)	RH (%)
for a vertical jet release	oodist = 0, Offset distance for a vertical jet	oodist = 0, Offset distance for a	oodist = 0, Offset distance for a vertical		Net Uned_	Not Used	Not Used
	in el=1. For ult Act in Obukt v up ti us d. frml = 0,/ user input	index, delle in the length und entre in the length und	jet release will not be used.	ALACH OHOV	A = M tin- b the le gth	LA= 0, Monin-Obukhov	ALA=0,Monin- Obukhov length
frml = 0,A user input value of the Monin-Obukhov	value of the Monin-	frml = 0,A user input value of the Monin-Obukhov length will not be used.	frml = 0,A user input value of the Monin- Obukhov length will not be used.	Not Used	Not Used	Not Used	Not Used
humidity will be based on	humid = 0, ambient humidity will be based on relative humidity.	humid = 0, ambient humidity will be based on relative humidity.	humid = 0, ambient humidity will be based on relative humidity.	Not Used	Not Used	Not Used	Not Used
Not Used	Not Used	Not Used	Not Used	SPC =0	SPC =0	SPC =0	SPC =0

HABIT PHASE-III

Work-in-Progress

Code Enhancements

- Adjustable GUI to maximize use of the monitor size
- Better and faster I/O data transfer and retrieval
- Consolidate common input HABIT-DEGADIS-SLAB
- Determine control-room "Intake-Height" key parameters

Code V&V

- Preform ALOHA-HABIT benchmark tests
- Implement D&S spill scenarios and modeling
- Add "Jack Rabbit" chlorine jet releases data

Protecting People and the Environment

Intake-High Impact Assessment (Gaussian Model)

$A = 0.08 (6 \text{ m}^{-0.3} + 1 - \ln \frac{H}{Z_0})$ 0.367 (2,5 - m) $B = 0.38 \,\mathrm{m}^{1.3} \,(8.7 - \ln \frac{H}{Z_{\odot}})$ 1,55 exp (- 2,35 m) $c_{\text{od,xyz}} = \frac{q_{\text{od}}}{2\pi \bar{u} \sigma_{\text{y}} \sigma_{\text{z}}} \exp \left[-\frac{y^2}{2\sigma_{\text{y}}^2} \right] \left\{ \exp \left[-\frac{(z-H)^2}{2\sigma_{\text{z}}^2} \right] + \exp \left[-\frac{(z+H)^2}{2\sigma_{\text{z}}^2} \right] \right\}$

Normal Gaussian Function

Height (σ_z) Coef. Vs. Distance for ATD 7 Classifications

Concentration in σ_z direction:

- Decreases with stability classes (A>F)
- Increases with downwind distance

PLUME TRAVEL DISTANCE (KILOMETERS)

RG 1.145: Atmospheric dispersion models for potential accident consequence assessment at nuclear power plants (1982)

Specific σ_z Coefficients

Differences between σ_z used in HABIT and ALOHA codes

Stability Class	A (very unstable)			D (neutral)			G (very stable)		
Wind Speed (m/s)	1	3	5	1	3	5	1	3	5
HABIT σ _z									
Distance = 400 m	87	97	156	30	52	133	26	50	133
Distance = 4,000 m	1000	1000	1000	86	226	590	40	213	585
ALOHA σ _z									
Distance = 400 m	83	83	83	15	15	15	4	4	4
Distance = 4,000 m	1000	1000	1000	78	78	78	19	19	19

Dispersion Sizes at Specific ATD-Classes and Distances

Stylized Representation of Changing Puff Volume Limits with Stability Class

Summary

- HABIT v1.1 (1995) was reengineered from EXTRAN (1991) and can't run by Windows 7.
- HABIT v1.2 like its v1.1 and run by Windows 7.
- HABIT v2.0 (1995): D&S dense models added with radiological assessment functions.
- HABIT v2.1 (2016): State of the Art and ready for ATD benchmarking.

Where is HABIT Code?

 HABIT v1.1 (1995) is available at RSICC/ORNL).

 Version 2.1 (2016) is available at RAMP.

2017 RAMP | Taiwan

Protecting People and the Environment

