

VARSKIN 6

Colby Mangini, PhD, CHP

VARSKIN Consultant
Paragon Scientific, LLC

International RAMP VARSKIN Workshop		
March 25th, 2018		
1300-1315	Overview and Objectives	
1315-1445	Intro to VARSKIN and Dose Calcs	
1445-1500	Break	
1500-1600	Exploring the GUI	
1600-1700	VARSKIN 6 Improvements	

International RAMP VARSKIN Workshop		
March 26th, 2018		
0900-1030	Start Examples	
1030-1045	Break	
1045-1200	More Examples	
1200-1300	Lunch	
1300-1430	NRC Case Study using VARSKIN	
1430-1445	Break	
1445-1600	Discuss V & V, VARSKIN Limitations	
1600-1700	VARSKIN Code Discussions and Student Examples	

Overview

- The NRC oversees licensee compliance with regulatory requirements specified in 10 CFR 20.1201(c)
- VARSKIN was first developed in 1987 to allow the NRC independent confirmation of skin dose estimates submitted by licensees
 - the code is intended to be used as a tool for calculating tissue dose at depth resulting from radiological contamination of skin
- The current version is VARSKIN 6.0

VARSKIN history

- VARSKIN (Traub et al., 1987)
- VARSKIN Mod 2 (Durham, 1992)
 - → SADDE calculations added (Reece et al., 1989)
- VARSKIN 3 (Durham, 2006)
 - > volumetric-source backscatter factors
 - → basic photon model added
 - → syringe geometry added
- VARSKIN 3.1 (Durham, 2009)
 - → correction of error in photon energy database
- VARSKIN 4 (Hamby et al., 2011)
 - → more rigorous treatment of photon dosimetry
 - → no need for code "installation"
 - → syringe model deleted
- VARSKIN 5 (Hamby et al., 2013)
 - → enhancements to electron dosimetry
- VARSKIN 6 (Hamby et al., 2017)
 - → ICRP 107 and Decay Daughter additions

Objectives

- To become knowledgeable of the general models used for skin dosimetry
- To become knowledgeable of the VARSKIN models employed for photon and electron skin dosimetry
- To gain experience executing the VARSKIN software for skin dosimetry estimation
- To become knowledgeable of VARSKIN's limitations

VARSKIN 6

Skin physiology and skin dose limits

Human skin

- The skin is the largest human organ/tissue
 - accounts for about 15% of adult body weight
- Human skin is similar to that of pigs
- Skin provides ...
 - physical barrier
 - to protect against external agents
 - to prevent excess water loss
 - thermo-regulation
- Serves a significant role in maintaining homeostasis
- Dead layer is about 70 μm thick
 - i.e., 7 mg/cm² for unit-density material
- Three fundamental living layers:
 - epidermis
 - dermis
 - subcutaneous fat (hypodermis)

Skin layers

Human skin - Epidermis

- The epidermis is a continually renewing layer
- It is a dynamic tissue in which cells are in unsynchronized continuous motion, making their way toward the surface
- Epidermis contains proliferating basal cells
 - undulating thickness from ~100 to ~1500 microns
- Epidermal stem cells in the basal layer are generally long-lived with slow cell cycles
- Wounding, however, can stimulate stem-cell division
- DNA damage can mutate stem cells
- Basal-layer cells migrate to the surface in about 30 days

Dosimetry implications

- Skin thickness (total) ranges between about 500 μm and 14,000 μm
- The energy deposition of most significance will be heavily impacted by hot-particle location
- Thus, calculated dose may or may not provide a true indication of radiation damage to that particular area of exposed skin
- Skin dose is generally limited by the potential for deterministic effects

Historical limits on skin dose

- ICRP 1 (1954) 600 mR/wk
 - @ 70 μm
- ICRP 9 (1966) 30 rem/yr
 - averaged over 1 cm²
- ICRP 26 (1977) 50 rem/yr
 - $50 100 \mu m$
- ICRP 59 (1992) 30 Gy/lifetime
 - averaged over 1 cm²
 - deterministic (dermal effects): $300 500 \mu m$
 - acute transient ulceration: $100 150 \mu m$
 - stochastic (epidermal effects): $20 100 \mu m$

Historical limits on skin dose

- ICRP 60 (1991) 20 Gy/lifetime; 0.5 Sv/yr
 - averaged over 1 cm² @ 70 μm
 - deterministic (dermal effects): 300 500 μm
 - stochastic (epidermal effects): $20 100 \mu m$
- 10 CFR 20 (1991) 0.5 Sv/yr
 - averaged over 1 cm² @ 70 μm
- 10 CFR 20 (2002) 0.5 Sv/yr
 - averaged over 10 cm² @ 70 μm

Limits on HOT particle skin dose

- NCRP 106 (1989) source limitations
 - to limit acute deep ulceration
 - 10¹⁰ beta particles emitted
 - equivalent to: \sim 5 Sv, over 1 cm² @ 100 150 μ m
- ICRP 60 (1991) 0.5 Sv/yr
 - averaged over 1 cm² @ 70 μm
- NCRP 130 (1999) 5 Sv/yr
 - averaged over 1 cm² @ 70 μm
 - 0.5 Sv/10 cm² for particle on clothing