
Intro to VARSKIN and Dose Calcs

USING VARSKIN



CODING structure

• GUI written in C#
• controls I/O functions and executables

• Three modules written in FORTRAN
• SadCalc.exe; VarCalc.exe; GamCalc.exe

• GamCalc.exe file written to execute photon dose model
• No need to “install” the code

• simply double-click the VARSKIN 6 executable file
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.rad and .photon dat files
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How is Beta Dose Determined?
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Electron Interactions
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Electron Interactions

• As energetic electrons pass through material, they transfer energy
• primarily via “soft collisions”, i.e., Coulombic interactions
• or, “hard” collisions with orbital electrons

• Energy loss is a function of KE & charge density
• Energy loss can result in:

• excitation – characteristic X-rays
• ionization – scattered energetic electrons
• Bremsstrahlung (>1 MeV electrons) – low-energy photons

• Scattered electrons may produce additional ion pairs
• e.g., clusters, delta rays, further excitation/ionization



Characteristics Important for Dosimetry

• The depth at which electrons penetrate in tissue
• Range and “Attenuation”

• The rate at which electron energy is lost
• Stopping Power

• Relative to the primary electron location, the proximity 
to which energy is absorbed

• Bremsstrahlung

• The fraction of electrons scattering without ever 
entering the dose material

• Backscatter
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Range-Energy Observations

• Electrons lose energy via tortuous paths
• Electron range (penetration depth) increases with increasing energy
• Linear range is largely dependent on electron density of the absorber 

atoms
• And, to a lesser degree, range is a function of Z

• result has practical implications for shielding
• density thickness (mg/cm2) is best indicator of electron range
• important tissue depths  7, 100, 300, 1000 mg/cm2



Range-Energy Relationship for Electrons
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Advantage of Density Thickness
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Electron Track Simulation
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~90% Range

“Maximum” Range

Average Range



Electron “Attenuation”
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Energy Transfer vs Absorption

• “Stopping Power” (-dE/dx) is a measure of energy loss
• “LET” is a measure of energy deposited locally
• Not all energy lost (transferred) is absorbed locally

• due to delta rays or bremsstrahlung
• “local” is defined by the radius of a cylinder within which energy is 

deposited, e.g., LET0.1

δ
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Mass Stopping Power

• Stopping power is often expressed relative to 
the absorber density (i.e., “mass stopping 
power”)

• With units of energy per density thickness, it is a 
very useful parameter in charged-particle 
dosimetry
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Total Mass Stopping Power

• Total energy loss as the electron moves through a medium
• Considers both collisional and radiative energy losses
• Generally, for dosimetry we assume that transfer = absorption

• i.e., energy loss (per unit density) is used to calculate dose
• a 3 MeV electron in water loses only 1% of its energy via bremsstrahlung
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Electron Backscatter
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 Because electrons are interacting with other electrons, the phenomenon 
of “backscatter” is an important issue

 In thin foils, backscatter isn’t significant to dosimetry
 In thick materials, however, some portion of the electron energy flux is 

redirected in the reverse direction and the average absorbed dose 
throughout the material is less than expected

 Empirical relationships appear in many different forms for estimating the 
backscatter effect

 Backscatter for particles on skin introduces additional difficulties in 
electron skin dosimetry



Backscatter Considerations
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 Energy loss functions are often developed with the initial assumption that 
the absorbing medium is homogeneous (i.e., 4π water)

 But, there are significant dose implications for scattered electrons when 
the medium is heterogeneous
 source in air, with a tissue interface
 volumetric high-Z source on skin
 either into, or out of, the dose receptor

 Most significant for situations with:
 low-energy electrons
 thick, high-Z targets

 If dose calculations are based on homogeneous emission/absorption,
backscatter must be considered
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Simplified Electron Dosimetry
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In thin slices that are uniformly exposed, the dose rate from 
charged particles can be expressed simply as the product of 
particle flux and mass stopping power:



Simplified Electron Dosimetry
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And, in thick materials (uniformly exposed), the average dose rate 
from charged particles can be determined from estimates of the 
particle range and related energy loss:
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Simple Hot-Particle Dosimetry
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Given an isotropic source, and assuming that all energy is deposited 
within a hemisphere of skin that has a radius equal to the maximum 
range (or some percentage thereof):
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Electron Point-Kernel Dosimetry
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As with photons, the point-kernel method can be used for mono-
energetic electron dosimetry in which dose is integrated over all source 
and receptor points:

The function 𝐹𝐹 ⁄𝑝𝑝 𝑝𝑝0,𝑑𝑑 is a “scaled absorbed dose distribution” (essentially a 
normalized Bragg curve) that is dependent on the electron initial energy and the 
fraction of maximum range (r/r0) that the electron has achieved by the time it 
reaches the dose location.
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Scaled Absorbed Dose Distributions
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The factor F(r/r0,E) is shown for electrons of energy E, and for beta 
particles of distributed E, normalized over their maximum range, r0 
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A Brief Review of the
Original VARSKIN Beta Dosimetry



Fundamentally …

• Point-kernel method employed
• Source on skin surface
• Dose calculated to a given 

averaging area at the user-
specified depth

• Energy absorption based on 
calculated stopping power at depth
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Previous Beta Dosimetry Model

• Using Berger dose point-kernel, B(r)  (MIRD Pamphlet No. 7, 1971)
• Numerically integrated over source and dose volumes
• r1 is a modified path length based on a density ratio
• r0 represents the maximum path length, in Berger’s case the X90

𝐵𝐵 𝑝𝑝 =
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Scaled Absorbed Dose Distribution
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Berger determined the absorbed dose distribution for electrons of a given 
energy and depth of penetration (X); this is essentially a Bragg curve for 
monoenergetic electrons traveling through the absorber (water in this 
case).

When depth of penetration is 
normalized by the depth 
required to absorb 90% of its
original energy (X90), a Scaled
Absorbed Dose Distribution is 
generated.  The SADD is referred 
to by Berger as F(X/X90).



SADD - By Nuclide
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Berger (1971) provides 
F(X/X90) values for 75 
beta emitters.

The beta energy emission spectra is folded with the energy-dependent scaled 
absorbed dose distribution to derive the nuclide-specific SADD.



Symmetric-Source Dose Calculation

• Original VARSKIN begins at the center dose point of the irradiation area
• The code divides the source into very small sub-volumes (source points)
• The number of source points chosen is sufficient for convergence (checked 

along the way)
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Varskin 3/4 Beta Dosimetry

• The dose rate at the next dose point along the radius is calculated 
until values are obtained at all sixty dose points

• If the dose profile defined by these sixty points as a function of target 
radius r is denoted by D(r), then the skin dose, averaged over area of 
the disk, is given by:
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Density Correction Model

• The original VARSKIN uses a modified path length to determine the energy 
lost in air or cover material(s) prior to entering the skin  

• For small-diameter sources, the electron path from the source point to the 
dose point may pass through the side of the source (e.g., the path may exit 
the source and pass through air before penetrating the skin)

• The actual path length within the source is multiplied by the source density, 
and the path length outside the source and above the cover material is 
multiplied by the density of the material outside the source (air)

• The point-kernel distance is therefore “density modified”

35



Density Correction Model
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How is Gamma Dose Determined?
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Photon Interactions and 
Dosimetry



Interaction Fundamentals

• Photon interactions are ‘semi-random’ events
• Photons generally interact with orbital electrons
• Interaction probability is governed by:

• material (Z, electron density)
• photon energy (E)

• … and is described by an interaction coefficient
• Principal mechanisms of interaction include (by increasing 

energy):
• Thomson/Rayleigh scatter (no E transfer)
• photoelectric
• Compton scatter
• pair production
• photo-disintegration (very high E)
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Relative Importance by Interaction Type
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Attenuation
• Attenuation is exponential and governed by the Beer-Lambert law
• Photon intensity never reaches zero
• Photon attenuation can be described by:

• I0 = photon intensity (flux) prior to material
• I = photon intensity after material
• x = material thickness
• µ = interaction coefficient (probability of interaction by any mechanism)

• For dosimetry considerations, coefficients are often necessary to describe the 
probability of interaction resulting in energy absorption

• referred to as mass absorption coefficient, with units of area per unit mass
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Energy Transfer - KERMA

• Kinetic Energy Released in Matter
• Has units of energy per unit mass of material (J/kg, but not Gy)
• KERMA is directly related to:

• the average energy transferred to material as a result of that interaction;
• uncollided photon fluence; and
• the probability (per unit density thickness) of a photon interaction.
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Energy Absorption - Dose

• “Absorbed Dose” also has units of energy per unit mass (J/kg or Gy)
• Different from KERMA in that the energy is absorbed (rather than simply 

transferred)
• DOSE is directly related to:

• the average energy absorbed in material as a result of that interaction;
• uncollided photon fluence; and
• the probability (per unit density thickness) of a photon interaction.
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Relationship Between KERMA and Dose

• 𝜇𝜇𝑡𝑡𝑡𝑡
𝜌𝜌

= probability per unit mass that energy is transferred to charged particles

• 𝜇𝜇𝑒𝑒𝑒𝑒
𝜌𝜌

= probability per unit mass that energy is absorbed locally

• For low-energy photons, nearly all of energy transferred is deposited locally, 
therefore, KERMA is insignificantly different than absorbed dose

• For a given photon energy, and once “charged-particle equilibrium” is established:
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Charged-Particle Equilibrium

• Using a transfer coefficient, KERMA is easily estimated from photon 
flux

• Dose, as a function of depth, must then be determined from a 
conversion of KERMA based on the buildup of electronic charge, 
also as a function of depth

• Charged-Particle Equilibrium (cpe) is established once this charge 
buildup is complete
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KERMA and Dose Buildup w/o Attenuation
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KERMA and Dose Buildup

47

Depth in material (d)

KERMA

absorbed dose ⋅( ) ( ) ( )cpeD d  = K d  f d

J/kg

µ
ρ

⋅Φ ⋅0( ) ( ) trK d  = E d  

Transient CPE



details …
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Charged-particle buildup

Depth in material (d)

KERMA absorbed dose
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maximum electron range

average electron range
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Photon Dose at Shallow Depths

• Thus, with the flux attenuated by material and geometry, and charged particle buildup 
taken into account, the dose rate at depth d, is determined using:
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VARSKIN Photon dosimetry



Varskin 3 Photon Dosimetry Model
• Expanded version of a method developed by Lantz and Lambert (1990)
• A point source is assumed (point at bottom center of all volumetric sources)
• All material between the source and target is considered tissue
• Estimated depth at which CPE is established is based on highest-energy photon
• Skin attenuation is not included, therefore low-E photons contribute to dose at 

all depths
• low-E cutoff is offered as a way to account for this

• Dose calculated assuming 1 rad in tissue is equivalent to 1 R:

• Relevant data obtained from NIST, ICRU-44, and NUCDECAY files
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VARSKIN 4/5/6 Photon Dosimetry

• The new VARKSIN photon dosimetry model introduced in VARSKIN 4 
considers:

• photon point-kernel methodology
• charge-particle buildup; attenuation; off-axis scatter
• numerical integration of 300 dose points for each source point

• Employs many of the same assumptions from the electron model:
• multiple geometries (point, disk, cylinder, sphere, slab)
• dose calculated to averaging disk (0.01 to 100 cm2) beneath skin 

at user specified depth
• variable dose averaging

• 2D averaging areas (regulatory compliance)
• 3D averaging volumes (detector simulation)
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“Point Kernel” Concept
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Dose Area
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Now, let’s put the dose equation to use …



“Point Kernel” Concept

54

Tissue

d

�̇�𝐷(𝑑𝑑)
𝑆𝑆

= 𝑑𝑑0 �
𝑠𝑠−𝜇𝜇𝜇𝜇

4𝜋𝜋𝑑𝑑2
�
𝜇𝜇𝑡𝑡𝑟𝑟
𝜌𝜌
� 𝑓𝑓𝑐𝑐𝑐𝑐𝑒𝑒(𝑑𝑑)



Integrate Point Kernels Over Source/Dose Volume
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Estimating Tissue Mass Attenuation Coefficients

• As used in VARSKIN 4/5, an empirical relationship to estimate μ/ρ for tissue 
as a function of incident photon energy (in MeV) is given below.

• For energies less than or equal to 20 keV,

• and for energies greater than 20 keV,
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ICRU 44 soft tissue mass attenuation coefficients
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Estimating Tissue Energy Absorption Coefficients

• A function was developed to approximate the energy-dependent value of 
μen/ρ for tissue:

• This function has a different set of coefficients for energies less than or equal 
to 30 keV and energies greater than 30 keV.
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ICRU 44 soft tissue mass energy absorption coefficients
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Accounting for CPE

CPE buildup correction factors, fCPE,  is defined as: 
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Charged-Particle Buildup
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• Using Monte Carlo simulation, the buildup correction factors were found to fit the 
general form:
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Numerical Integration Method

• Numerical integration provides
• Average of point kernel dose over combination of photon emission locations 
• Within volume of source, and
• Dose point locations

• Within infinitely thin disk of tissue
• Depth h from the surface
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Approach to calculation

• Convergence studies conducted
• Dose averaging disk divided into 

segments
• Three segmenting methods examined

• equal radii (quickest)
• equal off-axis angle
• equal annular area (slowest)
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Methods used to select integration method

64



Relative dose as a function of the number of segments in
a numerical integration (iterations), by method
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VARSKIN 4 
numerical 
integration 
utilizes 300 
segments along 
the radius for  
the averaging 
disk.
Convergence 
achieved with 
fewer segments 
for smaller disk 



VARSKIN 4/5/6 exposure geometries

•Source Geometries
•Point
•Disk
•Cylinder
•Sphere
•Slab
•Syringe
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 Offset Particle Model

 Distributed Source Option

 Geometry eliminated



VARSKIN 4/5/6 exposure options

• User specifies:
• Source & Geometry
• Dose depth
• Dose averaging area
• Volume averaging option
• Air and cover thicknesses

• Multiple cover calculator
• Option to turn off photon dose calculations
• “Reset” feature to re-initialize parameters
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air gap (5 cm max) is always adjacent to the skin











Impact of Source Geometry
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Cover model
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Cover Materials
• Up to 5 layers above the skin are allowed (air next to skin, if 

present)
• Attenuation in cover materials is considered

For Photons…
• The presence of cover materials

• disrupts CPE, adds depth, and alters off-axis geometry

• Material layers are restricted to “cotton” or “latex”
• Cotton or latex attenuation is energy dependent

• if ρ > 1.25 g/cm2 (cotton assumed)
• if ρ < 1.25 g/cm2 (latex assumed)

• For photon attenuation, the cover material is assumed to be air
• insignificant for very small volumetric sources and for photon 

energies above ~50 keV
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Air-Gap Model

• The presence of air between source and skin
• disrupts charged-particle buildup
• adds depth to dose calculation
• alters off-axis geometry

• The air layer can be model only as being in contact with the skin 
surface

• Attenuation in air is considered
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Special Options

• Exclude Photon Dose (off)
• Exclude Electron Dose (off)
• Perform Volume Averaging (off)

• errors possible with large values

• Offset Particle Model (off)
• available only for point source geometry and only for photon dosimetry





Volume Averaging

• Averaging cell is a cylinder defined laterally by the skin averaging 
area, with a user-specified top and bottom

• As defaults, the “top” of the cell is assumed to be the skin surface (0 
mg/cm2) and the “bottom” is assumed to be equal to the range of 
the maximum energy electron for the chosen radionuclide (not to 
exceed 1500 mg/cm2)



Volume Averaging
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On-Axis Calculation of Dose

• Varskin 3 calculated dose at 60 
locations around the dose-averaging 
disk

• Method tends to weight the average such 
that it provides an over-estimation

• For VARSKIN 4, we assumed the 
following:

• Point source is located directly above and 
on-axis with the averaging disk

• Presumes symmetry in calculations along 
a radius of the dose-averaging disk

• Weighted by the fractional area of each 
annulus

• Provides a better estimate of average 
dose to the entire disk
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Offset Particle Model

• For point source, photon dosimetry
• To estimate the greatest dose to a single averaging area beneath 

multiple sources
• Used when two (or more) hot particles are in proximity to each other 

(when separation is less than the diameter of the averaging area)
• On selection, user must enter the Offset Value (0 cm)



Offset-particle model
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Source is not on axis
of dose-averaging disk

This feature allows for the
calculation of photon dose from
multiple hot particles to a single

dose-averaging disk



Offset Particle
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Dose Calculation for Offset Particles
• Also, necessary for volumetric sources

• essentially all of source volume will be offset
• 15 x 15 x 15 source points
• 300 dose points along the symmetric diameter
• weighted by the fractional area of each annulus 

(red circle) that resides within the averaging disk
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Offset (10 cm2)
r = 1.78 cm

Relative
Dose Rate

0.0 cm 1.28

0.1 1.28

0.2 1.27

0.3 1.27

0.5 1.25

0.7 1.25

0.9 1.23

1.1 1.19

1.3 1.13

1.5 1.06

1.7 0.86

1.8 0.56

1.9 0.37



Off-Axis Correction

• CPE factors were determined at various depths on-axis in an infinite medium
• thus, photon/electron loss at tissue-air interface is not considered

• Previous calculations assumed  DI = DII = DIII

• additional simulations performed to consider electron loss
• Ratio of off-axis dose to perpendicular dose at depth is plotted
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Off-Axis Correction Factors
Implemented for 4 Dose Averaging Areas
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Elements of the dose calculation

• So, this leaves us with a point-kernel photon dosimetry model that contains these 
elements:

89

( ) ( )µ µ
θ

ρπ
− 

⋅ ⋅ ⋅ ⋅ 
 

&
0 2 ( , ) ,

4
d tr

cpe oa
SD d  = E e   f d E F E
d

Source Strength

Photon Energy

Geometric
Attenuation

Material
Attenuation

Energy Transfer
Probability

Buildup Correction

Off-Axis
Correction



SUMMARIZING the Model
Effort to improve accuracy, simplify, and provide continuity 

Model Components
• Attenuation Coefficient 

• improve accuracy

• Buildup Region – fcpe
• improve accuracy
• simplify –function of E 

• Off-Axis Factors – Foa
• analytical fit 
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Why do I need the source atomic number?

96



Volumetric Beta Dose vs Source Z
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Corrections to Dose-Point Kernel

• Spatial distribution of energy absorption from electron 
emission sources is the basic physical information 
required for electron dosimetry
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Corrections to Dose-Point Kernels

• Develop an electron energy-absorption scaling model for source 
materials with 7.42 < Z ≤ 94

• Develop a volumetric backscatter model for typical hot particle 
geometries
• to predict dose perturbations due to both source and atmospheric 

backscattering 

Dose planeWater

Non-Aqueous Source in Air



the handling of
kinetic energy loss (SADD)



Methods:  Scaling Model
• Using EGSnrc Monte Carlo simulations:

• Homogeneous point-source DPK’s for water at 0.01 MeV 
≤ E ≤ 8 MeV (30 energies)

• Non-homogeneous point-source DPK’s for 7.42 < Z ≤ 94 
(18 solid elements) at 0.01 MeV ≤ E ≤ 8 MeV
• water absorption sphere
• radii varied between 5% to 110% of the X90 value

Water

Absorption Sphere



Scaling Model

• 1 MeV electron DPK’s for the case of a homogenous medium (water) 
and the case of a non-homogeneous medium (for example, air over 
the skin with a source material of iron)



Scaling Model

• 1 MeV electron DPK’s for the case of a homogenous medium (water) 
and the case of a non-homogeneous medium (for example, air over 
the skin with a source material of iron)



Scaling Model



Scaling Results
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Radionuclide Library

• Current database taken from ICRP 38
• Contains > 800 radionuclides
• Parent/daughter relationships NOT incorporated
• Emissions include:

• photons (gamma; X-ray; annihilation)
• electrons (beta; positron; conversion; Auger)

• Source atomic number (Z) affects electron energy loss prior to skin entry









Distributed Source

• For all geometries except point
• The selected radionuclide is always distributed throughout the source 

area or volume
• This option simply gives the user the ability to enter the volumetric 

equivalent of activity, as opposed to total activity
• On selection:

• source units change from activity to activity per unit area (µCi/cm2) or 
volume (µCi/cm3)

• user must remove and re-select radionuclide(s)





Multiple Cover Calculator
• For each cover material, user enters two of:

• density (g/cm3)
• thickness (mm)
• density thickness (mg/cm2)

• Then, total thickness and effective density are used as inputs describing 
the total cover:

𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘
𝑠𝑠𝑐𝑐3 =

∑𝜌𝜌𝑑𝑑 𝑘𝑘
𝑠𝑠𝑐𝑐2

∑𝑑𝑑 (𝑠𝑠𝑐𝑐)





Volumetric Beta Dose vs Source Z
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Why would dose increase as Z increases >50?
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Corrections to Dose-Point Kernels

• Develop an electron energy-absorption scaling model for source 
materials with 7.42 < Z ≤ 94

• Develop a volumetric backscatter model for typical hot particle 
geometries
• to predict dose perturbations due to both source and atmospheric 

backscattering 

Dose planeWater

Non-Aqueous Source in Air



backscatter correction



Backscatter Correction

• Cross (1991b, 1992c) developed atmospheric point-source 
factors

• Source material point-source factors for medical physics by 
Buffa (2004), Cho (1999), and Lee (2004)

• Durham (2006) developed backscatter factors for volumetric 
sources with dimensions < beta-particle range

• accounts only for atmospheric scattering above the source



Original Backscatter Determination

Tissue (ρ = 1 g/cm3)

Water (ρ = 1 g/cm3) Air (ρ = 0.001 g/cm3)

Tissue (ρ = 1 g/cm3)

Isotropic Source Isotropic Source

Dosimetry Zone Dosimetry Zone



New Backscatter Model

• Point-source planar dose profiles for water, air, and 7.42 < Z ≤ 94 
scattering media at 0.01 MeV ≤ E ≤ 8 MeV using EGSnrc Monte 
Carlo simulations

• Dose averaging areas of 1 and 10 cm2

• Normal depths every 1 mg cm-2 (up to 1000 mg cm-2 )

Scattering Medium (“infinite” thickness) Cylindrical Dose Planes



Point-Source BSCF



Scatter Scenarios

• Source scatter for top/bottom of source

• Source scatter for sides of source

• Air scatter for top/sides of source



Scatter for Top/Bottom of Source
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Scatter for Top/Bottom of Source



Scatter for Top/Bottom of Source
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Air Scatter for Top/Sides of Source



Air Scatter for Top/Sides of Source



Scatter for Sides of Source
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Selective Integration

• Source Scatter for Top/Bottom of Source

• Source Scatter for Sides of Source

SW = source/water scatter correction for point sources

SE = scattering effectiveness (i.e., finite backscatter factor)

SA = source/air scatter correction for point sources

AW = air/water scatter correction for point sources

X = distance dimension

/ ( )top bottom top bottomSource BSCF SW SE SE= −

_ ( )
0.5

top
side op side side

X
Source BSCF SA X X= −



Selective Integration

• Air Scatter for Top/Sides of Source
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Volumetric BSCF 
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One other important improvement…
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Electron Energy Distribution

• Nuclides were first processed in SADCALC.f
• calculation of the SADD when adding a radionuclide to the User library
• electron emission data imported from ICRP38.BET

• For beta emitters:
• an energy distribution, S(E), was developed by interpolating 1500 points 

from 0.0 to Emax
• average energy of S(E) calculated
• conversion/Auger electrons added to S(E)

• but, if S(E)e > S(Emax) then S(E)e was added to S(Emax)

• For non-beta emitters:
• electron yields were added to a “dummy” 3H spectrum with a yield of 

0.1%, with Emax = 0.0186 MeV

• This resulted in errors depending on max electron energy



Electron Energy Distribution

• The new SADCALC routine constructs S(E) from the original beta 
emission spectrum

• … and, includes conversion electrons and Auger electrons at their 
proper energy

• Results in a more appropriate average electron energy incident on 
the skin



ELECTRON ENERGY – V3/4 vs V5/6

VARSKIN 3/4 VARSKIN 5/6

X90 (mm) Eavg (keV) X90 (mm) Eavg (keV)

0.0055 1.99 0.15 6.67

99mTc as the example



VARSKIN 5/6 Electron Model

• Integrated dose point-kernel over source and dose volumes
• Improved handling of electron energy distribution
• Modified energy loss (SADD) functions, (Fβ)

• relative to the X90 range

• New backscatter characteristics (BSCF)
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𝐺𝐺𝐺𝐺
𝑠𝑠𝑠𝑠𝑠𝑠 =
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Comparison with literature

• “Beta and Electron Dose Calculations to Skin Due to Contamination 
by Common Nuclear Medicine Radionuclides.” 

• McGuire and Dalrymple, Health Physics, 1990

• “Electron dose-rate conversion factors for external exposure of the 
skin from uniformly deposited activity on the body surface.”

• Kocher, D. C.; Eckerman, K. F., Health Physics, 1987

• 99mTc, 51Cr, 57Co, 67Ga, 111In, 123I, 131I, and 201Tl
• 1 μCi cm-2 source uniform contamination, averaged over a 1 cm2

• 0.004 cm to 0.010 cm skin depths



Depth dose comparisons
Depth in Tissue, cm

0.004 0.005 0.007

Nuclide V5/6 V4 M K V5/6 V4 M K V5/6 V4 M K

Co-57(EC) 0.32 0.00 0.36 0.32 0.27 0.00 0.29 0.29

Ga-67(EC) 2.97 0.00 3.34 3.21 1.14 0.00 1.19 1.09

Tc-99m(γ) 0.99 0.00 1.25 1.22 0.92 0.00 1.12 1.14 0.78 0.00 0.90 0.89

In-111(EC) 1.10 0.00 1.36 1.39

I-123(EC) 1.13 0.00 1.33 1.35

I-131(β) 4.87 5.10 6.30 6.33

Tl-201(EC) 2.01 0.00 2.20 2.24 0.90 0.00 1.27 0.97

Note:  Dose rates in rad/hr. (M) McGuire and Dalrymple, and (K) Kocher.

McGuire; Dalrymple. Beta and electron dose calculations to skin due to contamination by common nuclear medicine 
radionuclides. Health Phys. 1990.
Kocher, D. C.; Eckerman, K. F. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited 
activity on the body surface.  Health Phys. 53:135-141: 1987



… continued

0.008 0.01

Nuclide V5/6 V4 M K V5/6 V4 M K

Co-57 0.18 0.00 0.19 0.17

Ga-67 0.62 0.00 0.53 0.59

Tc-99m 0.70 0.00 0.79 0.76 0.54 0.00 0.58 0.63

In-111

I-123

I-131

Tl-201 0.62 0.00 0.97 0.68

Note:  Dose rates in rad/hr. (M) McGuire and Dalrymple, and (K) Kocher.

McGuire; Dalrymple. Beta and electron dose calculations to skin due to contamination by common nuclear medicine 
radionuclides. Health Phys. 1990.
Kocher, D. C.; Eckerman, K. F. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited 
activity on the body surface.  Health Phys. 53:135-141: 1987



Water Sphere
Averaging area: 1 cm2 Nuclide: Co-60 0.05 cm water 

sphere

Depth (µm)
MCNP5 

Dose Rate 
(mGy/hr/MBq)

VARSKIN 5/6
Dose Rate 

(mGy/hr/MBq)

VARSKIN 4
Dose Rate 

(mGy/hr/MBq)

30 396 385 375

50 297 281 271

70 238 216 205

100 167 153 142

120 133 122 112

150 96.9 85.1 75.2

200 58.0 46.6 39.1

300 18.1 14.0 9.97

500 1.67 0.961 0.168

1000 0 0 0



Iron Sphere
Averaging area: 1 cm2 Nuclide: Co-60 0.05 cm iron 

sphere

Depth (µm)
MCNP5

Dose Rate 
(mGy/hr/MBq)

VARSKIN 5/6
Dose Rate 

(mGy/hr/MBq)

VARSKIN 4
Dose Rate 

(mGy/hr/MBq)

30 59.2 58.7 48.7

50 46.9 42.9 35.0

70 38.7 32.9 26.6

100 26.7 23.2 18.4

120 21.8 18.6 14.5

150 15.9 12.9 9.70

200 9.77 7.04 5.04

300 3.12 2.10 1.28

500 0.479 0.144 0.0213

1000 0 0.000008 0



SUMMARY

• Electron energy distribution
• Energy scaling model
• Range scaling model
• Backscatter correction factors
• Comparisons brought closer in line with literature





VARSKIN Output

• English or SI units
• For each radionuclide (and total), the following doses are provided:

• Beta, Photon & Total:
• initial dose rate
• dose (no decay)
• decay-corrected dose

• Date/time
• Geometry summary
• Print option (to html file)
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Decay-Corrected Dose
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