CAUG Class 3

```
Simple Geometry: Cylinders
Example geometry with cylinder surfaces
C Cells
99 0
       1:2:-3
                imp:p=0 $ Outside world
20 0 -1 -2 3
                imp:p=1 $
C Surfaces
1 cx 5
           $ radius of cylinder
2 px 10
           $ top plane of cylinder
3 px -10
            $ bottom plane of cylinder
c notice how the cylinder being perpendicular to x (CX) means top and
c bottom planes are PX. The same will be true if you have a perpendicular
c to y (CY) and perpendicular to z (CZ) cylinder
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
Example geometry with cylinder surfaces
C Cells
99 0
       1:2:-3 imp:p=0 $ Outside world
20 0 -1 -2 3 imp:p=1 $
C Surfaces
1 cy 5
            $ radius of cylinder
            $ top plane of cylinder
2 py 10
            $ bottom plane of cylinder
3 py -10
c notice how the cylinder being perpendicular to x (CX) means top and
c bottom planes are PX. The same will be true if you have a perpendicular
c to y (CY) and perpendicular to z (CZ) cylinder
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
```

```
Example geometry with cylinder surfaces
C Cells
99 0
       1:2:-3 imp:p=0 $ Outside world
20 0 -1 -2 3 imp:p=1 $
C Surfaces
1 cz 5
            $ radius of cylinder
2 pz 10
            $ top plane of cylinder
3 pz -10 $ bottom plane of cylinder
c notice how the cylinder being perpendicular to x (CX) means top and
c bottom planes are PX. The same will be true if you have a perpendicular
c to y (CY) and perpendicular to z (CZ) cylinder
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
Example geometry with cylinder macrobody
C Cells
99 0 1 imp:p=0 $ Outside world
20 0 -1 imp:p=1
C Surfaces
C 5 input parameters:
C Surface # Right Circular Cylinder (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone radius
c # RCC x y z (x,y,z)
                        $ bottom of cone at origin, along x axis 10 cm high,
1 RCC 000 1000 5
                          radius 5
c
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
```

```
Example geometry with cylinder macrobody
C Cells
99 0
      1 imp:p=0 $ Outside world
20 0 -1 imp:p=1
C Surfaces
C 5 input parameters:
C Surface # Right Circular Cylinder (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone radius
c # RCC x y z (x, y, z) r
1 RCC 2 3 4 0 35 0 7 $ bottom of cone at (2,3,4), along Z axis 35 cm high,
                           radius 7
C
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
Example geometry with cylinder macrobody
C Cells
99 0 1 imp:p=0 $ Outside world
20 0 -1 imp:p=1
C Surfaces
C 5 input parameters:
C Surface # Right Circular Cylinder (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone radius
c # RCC x y z (x, y, z) r
1 RCC 0 0 0 0 0 -10 3 $ bottom of cone at origin, pointing down, 10 cm
                             long, radius 3
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
```

```
Example geometry with cylinder macrobody
C Cells
99 0
      1 imp:p=0 $ Outside world
20 0 -1 imp:p=1
C Surfaces
C 5 input parameters:
C Surface # Right Circular Cylinder (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone radius
c # RCC x y z (x,y,z) r
1 RCC 0 0 0 -3 0 4 1.5
                            $ bottom of cone at origin, along a NW vector 5 cm
                             high, radius 1.5
c
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
Example geometry with truncated cone
C Cells
99 0 1 imp:p=0 $ Outside world
20 0 -1 imp:p=1 $ cylinder
C Surfaces
C 6 input parameters:
C Surface # Truncated right angle cone (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone, radii 1 & 2
c # TRC x y z (x, y, z)
                          r_1 r_2
  1 TRC
         2 3 4 10 0 0
                          2 5 $ bottom of cone at (2,3,4), along x axis
C
                                 10 cm high, lower radius 2cm, upper radius 5 cm
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
```

```
Example geometry with truncated cone
C Cells
99 0
      1 imp:p=0 $ Outside world
20 0 -1 imp:p=1 $ cylinder
C Surfaces
C 6 input parameters:
C Surface # Truncated right angle cone (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone, radii 1 & 2
c # TRC
         x y z
               (x, y, z)
                         r_1 r_2
 1 TRC
         2 3 4
                -10 0 0
                          2 5 \$ top of cone at (2,3,4), along x axis
C
                               10 cm high, lower radius 5cm, upper radius 2cm
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
C Surfaces
C 6 input parameters:
C Surface # Truncated right angle cone (x,y,z) coordinate of bottom
c (x,y,z) height and directional vector of cone, radii 1 & 2
c # TRC x y z (x,y,z)
                         r_1 r_2
         1 TRC
                               5 cm high, lower radius 3cm, upper radius 1.5cm
C
C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
```

```
NESTED Spheres (intro)
Example geometry with nested spheres
C Cells
99 0 1 imp:p=0 $ Outside world
20 0 -1 2 imp:p=1 $ cylinder
30 0 -2 imp:p=1

C Surfaces
1 so 5
2 so 3

C Physics
c we won't focus on this for now
mode p
nps 1000
sdef erg=1 par=p
```